The monolayer formation of Bergmann glial cells is regulated by Notch/RBP-J signaling.

Dev Biol

Laboratory of Molecular Neuroscience, School of Biomedical Science and Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.

Published: November 2007

The Bergmann glia is a unipolar astrocyte in the cerebellar cortex, displaying a tight association with Purkinje cells. The cell bodies of Bergmann glia are located in a row around Purkinje cell somata; they extend radially arranged Bergmann fibers which enwrap the synapses on the Purkinje cell dendrites. It is well known that Bergmann glial somata migrate from the ventricular zone through the mantle zone, forming an epithelium-like lining in the Purkinje cell layer during development. However, the mechanism of the monolayer formation of Bergmann glia is poorly understood. Several reports have suggested that Notch signaling plays instructive roles in promoting the identities of several types of glial cells, including Bergmann glia. Moreover, Notch receptors are expressed in Bergmann glia during development. Here, we have deleted the Notch1, Notch2 and RBP-J genes in the Bergmann glia by GFAP-driven, Cre-mediated recombination, to study the role of Notch-RBP-J-signaling in the monolayer formation of Bergmann glia. Notch1/2- and RBP-J-conditional mutant mice showed disorganization of Bergmann fibers, irregularities of the Bergmann glial lining and aberrant localization of Bergmann glia in the molecular layer. Thus, Notch-RBP-J signaling plays crucial roles in the monolayer formation and morphogenesis of Bergmann glia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ydbio.2007.08.042DOI Listing

Publication Analysis

Top Keywords

bergmann glia
36
monolayer formation
16
bergmann
14
formation bergmann
12
bergmann glial
12
purkinje cell
12
glia
9
glial cells
8
bergmann fibers
8
signaling plays
8

Similar Publications

SIRT4 Protects Retina Against Excitotoxic Injury by Promoting OPA1-Mediated Müller Glial Cell Mitochondrial Fusion and GLAST Expression.

Invest Ophthalmol Vis Sci

January 2025

Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China.

Purpose: This study aimed to investigate the role of SIRT4 in retinal protection, specifically its ability to mitigate excitotoxic damage to Müller glial cells through the regulation of mitochondrial dynamics and glutamate transporters (GLASTs).

Methods: A model of retinal excitatory neurotoxicity was established in mice. Proteins related to mitochondrial dynamics, GLAST, and SIRT4 were analyzed on days 0, 1, 3, and 5 following toxic injury.

View Article and Find Full Text PDF

Hydrocortisone Attenuates the Development of Malformations of the Polymicrogyria Spectrum.

Int J Dev Neurosci

February 2025

Neurodegeneration and Repair Lab, Department of Pathology, Postgraduate Program in Anatomical Pathology, Faculty of Medicine, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.

Most of the malformations of the polymicrogyria spectrum are caused by destructive lesions of the neocortex during the third trimester of pregnancy, triggered by hypoxic-ischemic, hemorrhagic or infectious events, with neuroinflammation as a common pathophysiological mechanism. Our study investigated hydrocortisone treatment in attenuating inflammation, malformations development and seizures predisposition in mice subjected to neonatal transcranial freeze lesion. Our results show attenuation of malformation and predisposition to febrile seizures, with concomitant reduction of macrophages/microglia after neonatal freeze lesion, polarizing them towards an anti-inflammatory profile.

View Article and Find Full Text PDF

In this study, we aimed to explore the sex-specific effects and mechanisms of sevoflurane exposure on the neural development of pubertal rats on the basis of M1/M2 microglial cell polarisation and related signalling pathways. A total of 48 rat pups (24 males and 24 females) were assigned to the 0- or 2-h sevoflurane exposure group on the seventh day after birth. The Morris water maze (MWM) test was subsequently conducted on the 32nd to 38th days after birth.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a prevalent neurodegenerative disease caused by the death of dopaminergic neurons within the substantia nigra pars compacta (SNpc) region of the midbrain. Recent genomic and single cell sequencing data identified oligodendrocytes and oligodendrocyte precursor cells (OPCs) to confer genetic risk in PD, but their biological role is unknown. Although SNpc dopaminergic neurons are scarcely or thinly myelinated, there is a gap in the knowledge concerning the physiological interactions between dopaminergic neurons and oligodendroglia.

View Article and Find Full Text PDF

The ABC transporter A7 modulates neuroinflammation via NLRP3 inflammasome in Alzheimer's disease mice.

Alzheimers Res Ther

January 2025

Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo, NO-0372, Norway.

Background: Specific genetic variants in the ATP-binding cassette transporter A7 locus (ABCA7) are associated with an increased risk of Alzheimer's disease (AD). ABCA7 transports lipids from/across cell membranes, regulates Aβ peptide processing and clearance, and modulates microglial and T-cell functions to maintain immune homeostasis in the brain. During AD pathogenesis, neuroinflammation is one of the key mechanisms involved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!