Tris(2-benzimidazolylmethyl)amines have been found to be superior accelerating ligands for the copper(I)-catalyzed azide-alkyne cycloaddition reaction. Candidates bearing different benzimidazole N-substituents as well as benzothiazole and pyridyl ligand arms were evaluated by absolute rate measurements under relatively dilute conditions by aliquot quenching kinetics and by relative rate measurements under concentrated conditions by reaction calorimetry. Benzimidazole-based ligands with pendant alkylcarboxylate arms proved to be advantageous in the latter case. The catalyst system was shown to involve more than one active species, providing a complex response to changes in pH and buffer salts and the persistence of high catalytic rate in the presence of high concentrations of coordinating ligands. The water-soluble ligand (BimC4A)3 was found to be especially convenient for the rapid and high-yielding synthesis of several functionalized triazoles with 0.01-0.5 mol % Cu.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja072678l | DOI Listing |
Int J Pharm
January 2025
Novartis Pharma AG, GDD, TRD Biologics & CGT 4002 Basel, Switzerland.
In this study, we applied a systematic approach to establish an iterative workflow and to drive the chemical design of thermosensitive, in situ forming injectables as a function of the intended target product profile. Self-assembly, mechanical properties, physical state, and thermal transition behavior were assessed via nuclear magnetic resonance, oscillatory rheology, turbidimetry and visual inspection techniques. Thus, poly(N-isopropylacrylamide) (PNIPAM) and poly(2-alkyl-2-oxazoline)s (PAOx)s with LCSTs below body temperature were studied before and after grafting them onto azido-substituted hyaluronic acid (HA) via strain-promoted azide-alkyne cycloaddition (SPAAC).
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry, St Berchmans College (Autonomous), Changanassery, Kerala, 686101, India.
This computational study investigated the catalytic efficiency of novel RhCp complexes (X = CF, SiF, CCl, SOH) in [3 + 2] azide-alkyne cycloaddition reactions density functional theory (MN12-L/Def2-SVP). Through quantum mechanical approaches, we explore the impact of different substituents on the Cp* ligand on the mechanism, selectivity, and reactivity of these Rh-based catalysts. Non-covalent interaction (NCI) and reduced density gradient (RDG) analyses, along with frontier molecular orbital (FMO) and Hirshfeld atomic charge analyses, were utilized to assess ligand stability and catalytic performance.
View Article and Find Full Text PDFChem Biol Drug Des
January 2025
Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia.
Drug targeting strategies, such as peptide-drug conjugates (PDCs), have arisen to combat the issue of off-target toxicity that is commonly associated with chemotherapeutic small molecule drugs. Here we investigated the ability of PDCs comprising a human protein-derived cell-penetrating peptide-platelet factor 4-derived internalization peptide (PDIP)-as a targeting strategy to improve the selectivity of camptothecin (CPT), a topoisomerase I inhibitor that suffers from off-target toxicity. The intranuclear target of CPT allowed exploration of PDC design features required for optimal potency.
View Article and Find Full Text PDFEur J Med Chem
January 2025
Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha, 2713, Qatar. Electronic address:
Organophosphorus compounds, characterized by the incorporation of phosphorus into organic molecules, play a critical role in various fields such as medicine, agriculture, and industry. Their unique electronic properties and versatility make them essential in developing therapeutic agents, pesticides, and materials. One prominent class of organophosphorus compounds is organophosphorus heterocycles, which combine the benefits of both phosphorus and cyclic structures.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
Azide-alkyne cycloaddition of cyclooct-2-yn-1-ol and 2-(azidophenyl)boronic acid proceeded rapidly at room temperature with complete regioselectivity to afford a triazole having a boronate ester group. The secondary interaction to form a boronate ion contributed to cycloaddition rate acceleration and the control of regioselectivity. The interaction to form an imine or hemiaminal was also evaluated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!