Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We have reinvestigated the charge carrier transport properties in a liquid crystal of 2-(4'-heptyloxyphenyl)-6-dodecylthiobenzothiazole (7O-PBT-S12), for which the electronic conduction was first established in rodlike liquid crystals and for which the highest hole mobility in the smectic A (SmA) phase ever achieved was reported. We found that 7O-PBT-S12 exhibited three crystal phases, one of which appeared in a limited temperature range of 10 degrees just below the phase transition temperature from the SmA phase. In this crystal phase, nondispersive transient photohole currents were observed in time-of-flight experiments, and its hole mobility was determined to be 8 x 10(-3) cm(2)/Vs, slightly higher than that reported previously in the SmA phase. For the SmA phase, however, the hole mobility was 1 x 10(-4) cm(2)/Vs. Furthermore, we established the electron transport in the SmA phase of purified 7O-PBT-S12, whose mobility was the same as the hole mobility in that phase. In order to confirm generality of the new findings in 7O-PBT-S12, we investigated the carrier transport properties of its derivative having a short hydrocarbon chain, 2-(4'-heptyloxyphenyl)-6-butylthiobenzothiazole (7O-PBT-S4), and obtained comparable results. The present results correct a mistake in the previous report and give an idea of what a typical mobility in the SmA phase is. On the basis of these results, we discuss what determines the charge carrier mobility in smectic mesophases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp079538i | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!