Theoretical results are presented on the absorption and fluorescence of indole in aqueous solution as well as at the air/water surface. We use a combined quantum chemical statistical mechanical model with explicit solvent. An approximate ab initio complete active space self-consistent field description of the indole molecule is used, coupled to a discrete polarizable water medium. From the bulk simulations, strong support is found for the interchange mechanism, which explains the unusual solvent shift of the fluorescence of indole or tryptophan in a polar surrounding by a solvent induced switch of the fluorescing state. Two mechanisms are given to explain the different shifts for indole at the interface. First, a dielectric depletion effect, which is expected from the reduction of the amount of polar media. Second, an interface-specific effect, which derives from the stronger hydrogen bond formation at the surface. The latter effect acts to increase the shift for both absorption and emission at the surface as compared to the bulk. From these results, the intrinsic probe photophysics of tryptophan in proteins is discussed in terms of the properties of the protein/solvent interface and the orientation of the amino acid.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp0744477 | DOI Listing |
Microsurgery
January 2025
Plastic and Reconstructive Surgery, Department of Surgery, Hospital of Divine Savior, Vienna, Austria.
The Charles procedure (CP) is a potentially devastating treatment; however, in cases of an end stage of untreated or improperly treated lymphedema, it is the ultimate surgical therapy. As a life-saving solution, it quickly relieves patients with giant, hypertrophic extremities, mostly in ambulation and hygiene maintenance. Nevertheless, long-term results may disappoint both doctors and patients, who struggle with social stigma, the need for lifelong compression, massive lymphoedema in the distal parts of the feet, badly fitting shoes, excessive skin fibrosis, severe keratinization of skin-grafted surfaces, periodic lymphorrhea from the resected areas, or acute and chronic inflammation.
View Article and Find Full Text PDFLangenbecks Arch Surg
January 2025
Department of Chemical Science & Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan.
Purpose: We aimed to develop a novel fluorescent surgical gauze dyed with indocyanine green (ICG) to guide surgeons to the target anatomical destination during surgery for real-time navigation and to prevent gauze remnants after surgery.
Methods: Surgical gauze was dyed with an aqueous solution of ICG (5.0 × 10 mol L for Steraze, 1.
Tech Coloproctol
January 2025
Université Laval, 10, De l'Espinay St, Quebec City, QC, G1L 3L5, Canada.
Background: Inadequate bowel perfusion is among risk factors for colorectal anastomotic leaks. Perfusion can be assessed with indocyanine green fluorescence angiography (ICG) during colon resections. Possible benefits from its systematic use in high-risk patients with rectal cancer remain inconsistent.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
The development of stable and tunable polycyclic aromatic compounds (PACs) is crucial for the advancement of organic optoelectronics. Conventional PACs, such as acenes, often suffer from poor stability due to photooxidation and oligomerization, which are linked to their frontier molecular orbital energy levels. To address these limitations, we designed and synthesized a new class of π-expanded indoloindolizines by merging indole and indolizine moieties into a single polycyclic framework.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad, 500078, India.
Flexible bis-benzimidazole-based V-shaped amphiphilic probes (1 and 2) that form a fluorescent nanoscopic assembly in aqueous media have been designed. The ion-binding properties of compound 1 are investigated in both polar protic (water) and aprotic (acetonitrile) solvents. In acetonitrile, the compound shows a distinct chromogenic response towards Hg (LOD: 8.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!