Acidophiles are typically isolated from sulfate-rich ecological niches yet the role of sulfur metabolism in their growth and survival is poorly defined. Studies of heterotrophically grown "Ferroplasma acidarmanus" showed that its growth requires a minimum of 100 mM of a sulfate-containing salt. Headspace gas analyses by GC/MS determined that the volatile sulfur compound emitted by active "F. acidarmanus" cultures is methanethiol. In "F. acidarmanus" cultures grown either heterotrophically or chemolithotrophically, methanethiol was produced constitutively. Radiotracer studies with (35)S-labeled methionine, cysteine, and sulfate showed that all three were used in methanethiol production. Additionally, (3)H-labeled methionine was incorporated into methanethiol and was probably used as a methyl-group donor. Methanethiol production in whole cell lysates supplied with SO (3) (2-) indicated that NADPH-dependant sulfite reductase and methyltransferase activities were present. Cell lysates also contained enzymatic activity for methionine-gamma-lyase that cleaved the side chain of either methionine to form methanethiol or cysteine to produce H(2)S. Since methanethiol was detected from the degradation of cysteine, it is likely that sulfide was methylated by a thiol methyltransferase. Collectively, these data demonstrate that "F. acidarmanus" produces methanethiol through the metabolism of methionine, cysteine, or sulfate. This is the first report of a methanethiol-producing acidophile, thus identifying a new contributor to the global sulfur cycle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00792-007-0108-8 | DOI Listing |
Int Dent J
January 2025
Department of Human Microbiome & Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China. Electronic address:
Objective: To evaluate the effect of the toothpaste containing ε-poly-L-lysine (ε-PL) and funme peptide (FP) as key components on oral microbial composition and oral health.
Methods: An oral microbiome study was initially carried out to analyze the variation in the oral microbiota before and after use of antimicrobial peptide (AMP) toothpaste. Subsequently, a clinical trial was independently performed to assess the efficacy of AMP toothpaste by measuring the dental plaque index (PLI), volatile sulfur compounds (VSCs) levels, modified bleeding index (mBI), and bleeding on probing rate (BOP%).
Bioresour Technol
January 2025
Jingjiang College, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 China; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102 China. Electronic address:
Invasive Spartina alterniflora poses a significant threat to coastal wetland ecosystems. This study investigated the role of sulfur (S) in facilitating the invasion of S. alterniflora in cadmium (Cd)-contaminated coastal wetlands by greenhouse-control-experiment.
View Article and Find Full Text PDFTalanta
January 2025
State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China. Electronic address:
Formaldehyde (HCHO) is a harmful volatile organic pollutant, which is commonly found in interior decoration and furniture products. Therefore, it is necessary to develop a gas sensor that can quickly and accurately detect formaldehyde for human health and environmental protection. In order to achieve this goal, in this work, SnS/SnO heterostructure was synthesized by in-situ sulfurization process on the basis of SnO nanospheres, and its formaldehyde sensing performance was studied.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea. Electronic address:
Kraft lignin (KL), a byproduct of the pulp and paper industry, is commonly combusted as a low-grade fuel. However, its high sulphur content results in the emission of sulphur oxides, which pose environmental hazards. This study explores a sustainable approach for the valorisation of waste KL into syngas via CO-mediated pyrolysis.
View Article and Find Full Text PDFThis study aim is to elucidate the relationship between the microbial community dynamics and the production of volatile flavor compounds during the fermentation process of bacterial-type i. Using high-throughput sequencing (HTS) and headspace solid-phase microextraction, gas chromatography-mass spectrometry (HS-SPME-GC-MS) was used to investigate microbial diversity and volatile compound profiles at different fermentation stages. Spearman correlation analysis was employed to identify potential associations between microbial genera and flavor compounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!