We report a step in constructing an in silico model of a neocortical column, focusing on the synaptic connection between layer 4 (L4) spiny neurons and L2/3 pyramidal cells in rat barrel cortex. It is based first on a detailed morphological and functional characterization of synaptically connected pairs of L4-L2/3 neurons from in vitro recordings and second, on in vivo recordings of voltage responses of L2/3 pyramidal cells to current pulses and to whisker deflection. In vitro data and a detailed compartmental model of L2/3 pyramidal cells enabled us to extract their specific membrane resistivity ( approximately 16,000 ohms x cm(2)) and capacitance ( approximately 0.8 microF/cm(2)) and the spatial distribution of L4-L2/3 synaptic contacts. The average peak conductance per L4 synaptic contact is 0.26 nS for the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and 0.2 nS for NMDA receptors. The in vivo voltage response for current steps was then used to calibrate the model for in vivo conditions in the Down state. Consequently, the effect of a single whisker deflection was modeled by converging, on average, 350 +/- 20 L4 axons onto the modeled L2/3 pyramidal cell. Based on values of synaptic conductance, the spatial distribution of L4 synapses on L2/3 dendrites, and the average in vivo spiking probability of L4 spiny neurons, the model predicts that the feed-forward L4-L2/3 connection on its own does not fire the L2/3 neuron. With a broader distribution in the number of L4 neurons or with slight synchrony among them, the L2/3 model does spike with low probability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2000451PMC
http://dx.doi.org/10.1073/pnas.0707853104DOI Listing

Publication Analysis

Top Keywords

l2/3 pyramidal
16
pyramidal cells
12
spiny neurons
8
whisker deflection
8
spatial distribution
8
l2/3
7
vivo
5
model
5
modeling layer
4
layer 4-to-layer
4

Similar Publications

The apical dendrites of human L2/3 pyramidal neurons are capable of performing XOR computation by modulating the amplitude of dendritic calcium action potentials (dCaAPs) mediated by calcium ions. What influences this particular function? There is still no answer to this question. In this study, we employed a rational and feasible reduction method to successfully derive simplified models of human L2/3 pyramidal neurons while preserving their detailed functional properties.

View Article and Find Full Text PDF

Here we describe a type of depolarising plateau potentials (PPs; sustained depolarisations outlasting the stimuli) in layer 2/3 pyramidal cells (L2/3PC) in rat prefrontal cortex (PFC) slices, using whole-cell somatic recordings. To our knowledge, this PP type has not been described before. In particular, unlike previously described plateau potentials that originate in the large apical dendrite of L5 cortical pyramidal neurons, these L2/3PC PPs are generated independently of the apical dendrite.

View Article and Find Full Text PDF
Article Synopsis
  • Rhythmic whisker stimulation (RWS) in awake mice leads to a sustained increase in neuronal activity in the primary somatosensory cortex over one hour, indicating that sensory experiences can enhance cortical responses.
  • RWS selectively affects different populations of neurons, with vasoactive intestinal peptide-expressing (VIP) interneurons playing a key role in facilitating this enhanced activity through disinhibition.
  • These findings suggest that sensory input representation in the cortex is dynamic and can be modified by prior sensory experiences, contributing to our understanding of learning and plasticity in the brain.
View Article and Find Full Text PDF

Selective Modulation of Fear Memory in Non-Rapid Eye Movement Sleep.

Adv Sci (Weinh)

November 2024

School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China.

Article Synopsis
  • Targeted memory reactivation (TMR) during non-slow wave sleep inhibits fear memory consolidation, while TMR during slow wave sleep enhances it in mice.
  • The process affects sleep spindle occurrence and modifies the coupling of slow oscillations and spindles, which relates to how fear memory is strengthened or weakened.
  • Inhibition of specific neurons in the frontal association cortex during TMR affects memory outcomes, with increased activity in certain neurons linked to the mice’s freezing behavior, indicating their role in fear memory consolidation.
View Article and Find Full Text PDF

The granular retrosplenial cortex (RSG) supports key functions ranging from memory consolidation to spatial navigation. The mouse RSG contains several cell types that are remarkably distinct from those found in other cortical regions. This includes the physiologically and transcriptomically unique low rheobase neuron that is the dominant cell-type in RSG layers 2/3 (L2/3 LR), as well as the similarly exclusive pyramidal cells that comprise much of RSG layer 5a (L5a RSG).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!