Human cytomegalovirus (CMV), a ubiquitous human pathogen, is a leading cause of congenital infections and represents a serious health risk for the immunosuppressed patient. A vaccine against CMV is currently not available. CMV is characterized by its large genome and by multiple genes modulating the immunity of the host, which cluster predominantly at genome termini. Here, we tested whether the deletion of gene blocks rich in immunomodulatory genes could be used as a novel concept in the generation of immunogenic but avirulent, herpesvirus vaccines. To generate an experimental CMV vaccine, we selectively deleted 32 genes from the mouse cytomegalovirus (MCMV) genome. The resulting mutant grew to titers similar to that of wild-type MCMV in vitro. In vivo, the mutant was 10,000-fold attenuated and well tolerated, even by highly susceptible mice deficient for B, T, and NK cells or for the interferon type I receptor. Equally relevant for safety concerns, immune suppression did not lead to the mutant's reactivation from latency. Immunization with the replication-competent mutant, but not with inactivated virus, resulted in protective immunity, which increased over time. Vaccination induced MCMV-specific antibodies and a strong T-cell response. We propose that a targeted and rational approach can improve future herpesvirus vaccines and vaccine vectors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2168857PMC
http://dx.doi.org/10.1128/JVI.01911-07DOI Listing

Publication Analysis

Top Keywords

herpesvirus vaccines
8
targeted deletion
4
deletion regions
4
regions rich
4
rich immune-evasive
4
genes
4
immune-evasive genes
4
genes cytomegalovirus
4
genome
4
cytomegalovirus genome
4

Similar Publications

Gammaherpesviruses are oncogenic pathogens that establish lifelong infections. There are no FDA-approved vaccines against Epstein-Barr virus or Kaposi sarcoma herpesvirus. Murine gammaherpesvirus-68 (MHV68) infection of mice provides a system for investigating of gammaherpesvirus pathogenesis and testing vaccine strategies.

View Article and Find Full Text PDF

Enhanced immunogenicity of a BoHV-1 gG-/tk- vaccine.

Vaccine

January 2025

National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China; Key Laboratory of development of veterinary diagnostic products, Ministry of Agriculture and Rural Affair, Wuhan 430070, China. Electronic address:

Bovine herpesvirus type 1 (BoHV-1) is a widespread respiratory infection that significantly impacts cattle health worldwide. To address this issue in China, we previously developed a novel double gene-deleted vaccine targeting gG and tk. In this study, we further evaluated the efficacy of this vaccine by challenging vaccinated cattle with a prevalent wild-type BoHV-1 strain and comparing its effectiveness against a commercially available inactivated BoHV-1 vaccine.

View Article and Find Full Text PDF

Gammaherpesviruses are oncogenic pathogens that establish lifelong infections. There are no FDA-approved vaccines against Epstein-Barr virus or Kaposi sarcoma herpesvirus. Murine gammaherpesvirus-68 (MHV68) infection of mice provides a system for investigating gammaherpesvirus pathogenesis and testing vaccine strategies.

View Article and Find Full Text PDF

Elephant endotheliotropic herpesvirus (EEHV) causes lethal hemorrhagic disease (HD) in Asian and African elephants in human care and the wild. It is the leading cause of death for young Asian elephants in North American and European zoos despite sensitive diagnostic tests and improved treatments. Thus, there is a critical need to develop an effective vaccine to prevent severe illness and reduce mortality from EEHV-HD.

View Article and Find Full Text PDF

Development Using Bioluminescence Imaging of a Recombinant Anguillid Herpesvirus 1 Vaccine Candidate Associated with Normal Replication In Vitro but Abortive Infection In Vivo.

Vaccines (Basel)

December 2024

Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium.

Background/objectives: Anguillid herpesvirus 1 (AngHV-1) (recently renamed Cyvirus anguillidallo 1) is the etiologic agent of a lethal disease that affects several eel species. It is thought to be one of the main infectious agents causing a population decline in wild eels and economic loss within the eel aquaculture sector. To date, no vaccines are available against AngHV-1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!