Tumor necrosis factor alpha (TNFalpha) plays a major role in chronic heart failure, signaling through two different receptor subtypes, TNFR1 and TNFR2. Our aim was to further delineate the functional role and signaling pathways related to TNFR1 and TNFR2 in cardiac myocytes. In cardiac myocytes isolated from control rats, TNFalpha induced ROS production, exerted a dual positive and negative action on [Ca(2+)] transient and cell fractional shortening, and altered cell survival. Neutralizing anti-TNFR2 antibodies exacerbated TNFalpha responses on ROS production and cell death, arguing for a major protective role of the TNFR2 pathway. Treatment with either neutralizing anti-TNFR1 antibodies or the glutathione precursor, N-acetylcysteine (NAC), favored the emergence of TNFR2 signaling that mediated a positive effect of TNFalpha on [Ca(2+)] transient and cell fractional shortening. The positive effect of TNFalpha relied on TNFR2-dependent activation of the cPLA(2) activity, independently of serine 505 phosphorylation of the enzyme. Together with cPLA(2) redistribution and AA release, TNFalpha induced a time-dependent phosphorylation of ERK, MSK1, PKCzeta, CaMKII, and phospholamban on the threonine 17 residue. Taken together, our results characterized a TNFR2-dependent signaling and illustrated the close interplay between TNFR1 and TNFR2 pathways in cardiac myocytes. Although apparently predominant, TNFR1-dependent responses were under the yoke of TNFR2, acting as a critical limiting factor. In vivo NAC treatment proved to be a unique tool to selectively neutralize TNFR1-mediated effects of TNFalpha while releasing TNFR2 pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M704003200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!