Phosphodiesterase 10A (PDE10A) mRNA and protein levels decline in the striatum of R6/1 and R6/2 Huntington's disease (HD) mice prior to motor symptom development. In human HD, PDE10A protein levels are significantly decreased in the caudate-putamen of patients with grade 3 HD compared to age-matched controls. To test whether the loss of PDE10A activity in the striatum was detrimental to normal brain function, we treated wild-type (WT) mice with chronic administration of papaverine, which is a specific inhibitor of PDE10A. At 7 weeks of age, mice were introduced to a weekly battery of motor tests, including assessment of weight, locomotion, gait, and coordination. Beginning at 8 weeks of age, mice received 0, 5, 10 or 20 mg/kg papaverine once daily until the completion of behavioral testing. Following 14 days of papaverine injections, mice were assessed for deficits in cognitive performance as measured in the Morris water maze (MWM). All behavioral tests occurred either immediately prior to or 30 min following a subcutaneous papaverine challenge dose. Twenty-four hours following completion of the 2-3 week MWM protocol, mice were given a dose of papaverine and 30 min later psychological function assessed in the Light-Dark (LD) Test. Chronic administration of papaverine for 42 days was associated with distinct motor perturbations, mild cognitive disturbance and anxiety-like behaviors. Subsequently, we assessed the effect of 14 days papaverine (i.e. sub-chronic) treatment on psychological function of WT and R6/1 HD mice. While sub-chronic papaverine induced anxiety-like behavior in WT mice, it appeared to have little effect on the behavior of R6/1 HD mice. Finally, a separate group of 6-week old WT and R6/2 HD mice were treated for 21 days with saline or 10 mg/kg fluoxetine, an agent with anxiolytic and anti-depressant effects, in order to compare the effects of papaverine and fluoxetine on anxiety-like behavior in the LD test. CREB and PDE10A protein levels in striatum and hippocampus were determined by western blot. While papaverine treatment reduced CREB protein levels in the hippocampus and striatum, fluoxetine increased CREB in the hippocampus. These data suggest that papaverine and fluoxetine may produce quite different effects on behavior; these behaviors may be linked to CREB expression in brain regions associated with motor and cognitive functions. PDE10A protein levels were decreased by both papaverine and fluoxetine. Chronic PDE10A inhibition produced a variety of behavioral and central neurochemical deficits and these effects were exacerbated by stress. The unique localization of PDE10A and its apparent role in basal ganglia function may underlie its role in psychiatric and neurological disorders involving the basal ganglia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.euroneuro.2007.08.002DOI Listing

Publication Analysis

Top Keywords

protein levels
20
pde10a protein
12
papaverine
12
papaverine fluoxetine
12
mice
11
phosphodiesterase 10a
8
pde10a
8
levels decreased
8
chronic administration
8
administration papaverine
8

Similar Publications

Background: Duchenne muscular dystrophy (DMD) is a prevalent, fatal degenerative muscle disease with no effective treatments. Mdx mouse model of DMD exhibits impaired muscle performance, oxidative stress, and dysfunctional autophagy. Although antioxidant treatments may improve the mdx phenotype, the precise molecular mechanisms remain unclear.

View Article and Find Full Text PDF

Characterization of a chitinase from Trichinella spiralis and its immunomodulatory effects on allergic airway inflammation in mice.

Parasit Vectors

January 2025

School of Basic Medicine Science, Fujian Province, Putian University, Key Laboratory of Translational Tumor Medicine in , Putian City, 351100, Fujian Province, China.

Background: A fundamental tenet of the hygiene theory is the inverse association between helminth infections and the emergence of immune-mediated diseases. Research has been done to clarify the processes by which helminth-derived molecules can inhibit immunological disorders. This study aimed to evaluate the ability of Trichinella spiralis chitinase (Ts-chit) to ameliorate the symptoms of allergic airway inflammation.

View Article and Find Full Text PDF

Background: The imbalance of glutamate (Glu) and gamma-aminobutyric acid (GABA) neurotransmitter system plays a crucial role in the pathogenesis of Alzheimer's disease (AD). Riluzole is a Glu modulator originally approved for amyotrophic lateral sclerosis that has shown potential neuroprotective effects in various neurodegenerative disorders. However, whether riluzole can improve Glu and GABA homeostasis in AD brain and its related mechanism of action remain unknown.

View Article and Find Full Text PDF

Schizophrenia is one of the most debilitating mental illnesses affecting any age group. The mechanism and etiology of schizophrenia are extremely complex and multiple signaling pathways recruit genes implicated in the etiology of this disease. While the role of Wnt/β-catenin signaling in this disorder has been verified, the impact of long noncoding RNAs (lncRNAs) associated with this pathway has not been studied in schizophrenia.

View Article and Find Full Text PDF

RNA-Targeting CRISPR/CasRx system relieves disease symptoms in Huntington's disease models.

Mol Neurodegener

January 2025

Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.

Background: HD is a devastating neurodegenerative disorder caused by the expansion of CAG repeats in the HTT. Silencing the expression of mutated proteins is a therapeutic direction to rescue HD patients, and recent advances in gene editing technology such as CRISPR/CasRx have opened up new avenues for therapeutic intervention.

Methods: The CRISPR/CasRx system was employed to target human HTT exon 1, resulting in an efficient knockdown of HTT mRNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!