Ricin was encapsulated in various liposomes having neutral, negatively and positively charged and different density of DSPE-mPEG-2000 on the surface and cytotoxicity of ricin entrapped in these different charged liposomal formulations was studied in CHO pro(-) cells and compared with free ricin with a view to develop an optimum delivery system for ricin in vivo. It was observed that the cytotoxicity of ricin entrapped in various charged liposomes was significantly dependent on the charge on the surface of liposomes. The maximum cytotoxicity of ricin was observed when it was delivered through negatively charged liposomes. Monensin enhances the cytotoxicity of ricin entrapped in various charged liposomes and the extent of enhancement of the cytotoxicity is significantly dependent on the charge on the surface of liposomes. Maximum potentiation (213.14-fold) of cytotoxicity of ricin was observed when it was delivered through positively charged liposomes followed by negatively charged (83.36-fold) and neutral (71.30-fold) liposomes, respectively. Studies on the kinetics of inhibition of protein synthesis by ricin entrapped in various charged liposomes revealed that lag period of inhibition of protein synthesis is significantly lengthened following delivery through various charged liposomes. However, in the presence of monensin, the lag period was reduced. There is a marginal variation in the cytotoxicity of ricin entrapped in various charged liposomes after incorporation of 5mol% of DSPE-mPEG-2000 on the surface. However, there is a significant variation in the enhancing potency of monensin on the cytotoxicity of ricin entrapped in various charged liposomes in CHO pro(-) cells following incorporation of 5mol% DSPE-mPEG-2000 on the surface. Studies on the effect of variation of density of DSPE-mPEG-2000 on the surface of various charged liposomes on the enhancement of cytotoxicity of entrapped ricin by monensin in CHO pro(-) cells showed that the enhancing potency of monensin on the cytotoxicity of ricin entrapped in various charged liposomes is significantly dependent on the density of DSPE-mPEG-2000 on their surface. It was also observed that the efficacies of monensin on the enhancement of cytotoxicity of ricin entrapped in various charged PEG-liposomes in CHO pro(-) cells was highly related to their amount of cell-association. The present study has clearly shown that by suitable alteration of liposomal lipid composition, charge and density of hydrophilicity it would be possible to direct liposomal ricin to specific cells for their selective elimination in combination with monensin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2007.08.032 | DOI Listing |
The U.S. opioid epidemic is an extraordinary public health crisis that started in 1990 and significantly accelerated in the last decade.
View Article and Find Full Text PDFTechnol Cancer Res Treat
January 2025
Cell Therapy Center, The University of Jordan, Amman, Jordan.
Background: Doxorubicin (DOX) is a potent chemotherapeutic agent for breast cancer, but its effectiveness is often diminished by resistance mechanisms, particularly through p-glycoprotein (P-gp) mediated drug efflux. Clarithromycin (CAM), a macrolide antibiotic, inhibits multiple metabolic pathways including CYP3A and P-gp, potentially countering DOX resistance.
Objective: This study aimed to evaluate the potentiation of DOX and its effectiveness against the MCF-7 breast cancer cell line by encapsulating both DOX and CAM in PEGylated liposomes.
J Liposome Res
January 2025
SiteDel Group, Department of Pharmacy, University of Oslo, Blindern, Oslo, Norway.
In this study, liposomes consisting of soybean phosphatidyl choline (SoyPC) and different molar concentrations (10 mol% and 20 mol%) of dioleoyl trimethylammoniumpropane (DOTAP) were prepared by the thin film hydration method and coated with sodium hyaluronate (NaHA) of different MWs (8-15 kDa, 30-50 kDa and 90-130 kDa) and concentrations (0.01-0.2% w/w) using phosphate buffer (PB) or glycerol phosphate buffer (G-PB) as the hydration medium.
View Article and Find Full Text PDFPharmaceutics
December 2024
Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India.
Liposome-based drug delivery technologies have showed potential in enhancing medication safety and efficacy. Innovative drug loading and release mechanisms highlighted in this review of next-generation liposomal formulations. Due to poor drug release kinetics and loading capacity, conventional liposomes have limited clinical use.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Pharmaceutical Technology, Faculty of Natural Sciences I, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle/Saale, Germany.
Background/objectives: Bringing small interfering RNA (siRNA) into the cell cytosol to achieve specific gene silencing is an attractive but also very challenging option for improved therapies. The first step for successful siRNA delivery is the complexation with a permanent cationic or ionizable compound. This protects the negatively charged siRNA and enables transfection through the cell membrane.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!