Adsorption of anionic dyes on to waste Fe (III)/Cr (III).

J Environ Sci Eng

Environmental Chemistry Division, Department of Environmental Sciences, Bharathiar University, Coimbatore - 641 046, INDIA.

Published: January 2006

Waste Fe (III)/Cr (III) hydroxide was investigated for the removal of anionic dyes, namely acid brilliant blue (acidic dye) and procion red (reactive azo dye) from aqueous solution. In batch experiments, parameters studied include contact time, adsorbate concentration, pH, adsorbent dose and temperature. Adsorption followed Langmuir isotherm with adsorption capacity of 10.37 and 3.28 mg/g for acid brilliant blue and procion red, respectively. Adsorption kinetic studies showed second order with respect to acid brilliant blue and first order with respect to procion red. Thermodynamic parameters such as free energy, enthalpy and entropy of adsorption were also evaluated.

Download full-text PDF

Source

Publication Analysis

Top Keywords

acid brilliant
12
brilliant blue
12
procion red
12
anionic dyes
8
waste iii/cr
8
iii/cr iii
8
order respect
8
adsorption
5
adsorption anionic
4
dyes waste
4

Similar Publications

With the growing threat of organic pollutants in water bodies, there is an urgent need for sustainable and efficient water decontamination methods. This research focused on synthesizing a novel Z-scheme ternary heterostructure composed of graphene oxide (GO)-mediated polyaniline (PANI) with α-FeO and investigated its potential in brilliant green (BrG) and ciprofloxacin (CIP) degradation tests under visible light. The ternary composite demonstrated exceptional photocatalytic activity, with the optimized 10%PANI/GO/α-FeO (10PGF) photocatalyst achieving 99.

View Article and Find Full Text PDF

The "Ins and Outs and What-Abouts" of H2A.Z: A Tribute to C. David Allis.

J Biol Chem

January 2025

Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58-62, 35390 Giessen, Germany. Electronic address:

In 2023, the brilliant chromatin biologist C. David Allis passed away leaving a large void in the scientific community and broken hearts in his family and friends. With this review, we want to tribute Dave's enduring inspiration by focusing on the histone variant H2A.

View Article and Find Full Text PDF

Potential and characteristics on nitrobenzene degradation by biological acidification.

J Environ Manage

January 2025

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China. Electronic address:

Biological acidification, efficient and low-cost biotechnology, is crucial in treating pharmaceutical, pesticide water, and petrochemical wastewater. Nitrobenzene is a typical organic pollutant in petrochemical wastewater with high toxicity and long persistence. However, its effect on hydrolysis acidification is yet to be fully elucidated.

View Article and Find Full Text PDF

In this work, Terminalia chebula leaf extract was used to synthesize CuO-CoO nanoparticles, which were then embedded in a rice straw biochar. This new biochar-based nano-catalyst is used to photocatalytically degrade a variety of dyes (Eosin Y, Trypan Blue, Crystal Violet, Methylene Blue, Brilliant Green), as well as a binary mixture of Eosin Y and Trypan Blue dyes. It is also used for the catalytic reduction of nitro compounds (4-NP, 3-NP, and Picric acid).

View Article and Find Full Text PDF

The natural flavonoid Quercetin (QT) showed a potential for various health benefits, but its pharmaceutical applications are hindered by low solubility, permeability, and limited bioavailability. This research aimed to synthesize, develop and optimize polylactic acid co-glycolic acid (PLGA) nanobubbles using solvent evaporation method as a sustained delivery system for QT, thus improving stability and bioavailability. Through a four-factor, three-level Box Behnken Design, 29 experimental runs were carried out to optimize QT-PLGA nanobubbles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!