Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The effect of sulfur dioxide (SO2) on the formation of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) has been studied in an entrained-flow reactor (EFR) under simulated waste combustion conditions. A chlorination model based on conditional probability was employed to evaluate the homologue patterns of PCDDs and PCDFs. Results revealed that the presence of SO2 did not alter the formation pathway although SO2 suppressed PCDD/F formation. The prediction model of PCDF showed good agreement with the experimental data (R = 0.95), whereas the prediction for PCDDs did not correlate well with the experimental data. This may be explained because potential chlorination pathways play a significant role in PCDF formation, whereas PCDDs are mainly formed through condensation reactions. Furthermore, the result indicated that the steric hindrance during formation has more effects on PCDD than on PCDF due to the symmetric molecular structures of PCDDs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1001-0742(07)60019-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!