Graph theory as a proxy for spatially explicit population models in conservation planning.

Ecol Appl

Nicholas School of the Environment, Duke University, Durham, North Carolina, USA.

Published: September 2007

Spatially explicit population models (SEPMs) are often considered the best way to predict and manage species distributions in spatially heterogeneous landscapes. However, they are computationally intensive and require extensive knowledge of species' biology and behavior, limiting their application in many cases. An alternative to SEPMs is graph theory, which has minimal data requirements and efficient algorithms. Although only recently introduced to landscape ecology, graph theory is well suited to ecological applications concerned with connectivity or movement. This paper compares the performance of graph theory to a SEPM in selecting important habitat patches for Wood Thrush (Hylocichla mustelina) conservation. We use both models to identify habitat patches that act as population sources and persistent patches and also use graph theory to identify patches that act as stepping stones for dispersal. Correlations of patch rankings were very high between the two models. In addition, graph theory offers the ability to identify patches that are very important to habitat connectivity and thus long-term population persistence across the landscape. We show that graph theory makes very similar predictions in most cases and in other cases offers insight not available from the SEPM, and we conclude that graph theory is a suitable and possibly preferable alternative to SEPMs for species conservation in heterogeneous landscapes.

Download full-text PDF

Source
http://dx.doi.org/10.1890/06-1073.1DOI Listing

Publication Analysis

Top Keywords

graph theory
32
graph
8
spatially explicit
8
explicit population
8
population models
8
heterogeneous landscapes
8
alternative sepms
8
habitat patches
8
identify patches
8
theory
7

Similar Publications

This study intents to detect graphical network features associated with seizure relapse following antiseizure medication (ASM) withdrawal. Twenty-four patients remaining seizure-free (SF-group) and 22 experiencing seizure relapse (SR-group) following ASM withdrawal as well as 46 matched healthy participants (Control) were included. Individualized morphological similarity network was constructed using T1-weighted images, and graphic metrics were compared between groups.

View Article and Find Full Text PDF

Prediction of Thermodynamic Properties of C-Based Fullerenols Using Machine Learning.

J Chem Theory Comput

January 2025

Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China.

Traditional machine learning methods face significant challenges in predicting the properties of highly symmetric molecules. In this study, we developed a machine learning model based on graph neural networks (GNNs) to accurately and swiftly predict the thermodynamic and photochemical properties of fullerenols, such as C(OH) ( = 1 to 30). First, we established a global method for generating fullerenol isomers through isomer fingerprinting, which can generate all possible isomers or produce diverse structural types on demand.

View Article and Find Full Text PDF

Clustering time-evolving networks using the spatiotemporal graph Laplacian.

Chaos

January 2025

School of Mathematical & Computer Sciences, Heriot-Watt University, EH14 4AS Edinburgh, United Kingdom.

Time-evolving graphs arise frequently when modeling complex dynamical systems such as social networks, traffic flow, and biological processes. Developing techniques to identify and analyze communities in these time-varying graph structures is an important challenge. In this work, we generalize existing spectral clustering algorithms from static to dynamic graphs using canonical correlation analysis to capture the temporal evolution of clusters.

View Article and Find Full Text PDF

Multilayer network instability underlying persistent auditory verbal hallucinations in schizophrenia.

Psychiatry Res

December 2024

Department of Psychiatry, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China. Electronic address:

Background: Auditory verbal hallucinations (AVHs) in schizophrenia (SCZ) are linked to brain network abnormalities. Resting-state fMRI studies often assume stable networks during scans, yet dynamic changes related to AVHs are not well understood.

Methods: We analyzed resting-state fMRI data from 60 SCZ patients with persistent AVHs (p-AVHs), 39 SCZ patients without AVHs (n-AVHs), and 59 healthy controls (HCs), matched for demographics.

View Article and Find Full Text PDF

A Neural-Network-Based Mapping and Optimization Framework for High-Precision Coarse-Grained Simulation.

J Chem Theory Comput

January 2025

Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

The accuracy and efficiency of a coarse-grained (CG) force field are pivotal for high-precision molecular simulations of large systems with complex molecules. We present an automated mapping and optimization framework for molecular simulation (AMOFMS), which is designed to streamline and improve the force field optimization process. It features a neural-network-based mapping function, DSGPM-TP (deep supervised graph partitioning model with type prediction).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!