Exotic plant invasions into Hawaiian montane forests have altered many important nutrient cycling processes and pools. Across different ecosystems, researchers are uncovering the mechanisms involved in how invasive plants impact the soil microbial community-the primary mediator of soil nutrient cycling. We examined whether the invasive plant, Hedychium gardnerianum, altered microbial community composition in forests dominated by a native tree, Metrosideros polymorpha, under varying soil nutrient limitations and soil fertility properties within forest plots of the Hawaii long-term substrate age gradient (LSAG). Microbial community lipid analysis revealed that when nutrient limitation (as determined by aboveground net primary production [ANPP]) and soil fertility were taken into account, plant species differentially altered soil microbial community composition. Microbial community characteristics differed under invasive and native plants primarily when N or P was added to the older, highly weathered, P-limited soils. Long-term fertilization with N or P at the P-limited site led to a significant increase in the relative abundance of the saprophytic fungal indicator (18:2 omega 6c,9c) under the invasive plant. In the younger, N-limited soils, plant species played a minor role in influencing soil microbial community composition. We found that the general rhizosphere microbial community structure was determined more by soil fertility than by plant species. This study indicates that although the aggressive invasion of a nutrient-demanding, rapidly decomposable, and invasive plant into Hawaiian forests had large impacts on soil microbial decomposers, relatively little impact occurred on the overall soil microbial community structure. Instead, soil nutrient conditions were more important determinants of the overall microbial community structure within Hawaii's montane forests.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00248-007-9323-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!