Conventional cancer treatments are not adequate for the majority of most patients stricken with squamous cell carcinomas of the head and neck (SCCHN). Conditionally replicating adenoviruses (CRAds) represent a promising new modality for treating of neoplastic diseases, including SCCHN. Specifically, CRAd agents infect tumor cells and selectively replicate within them, thus causing their death while sparing surrounding normal cells in the host. Oncolysis results from the replicative life cycle of the virus, which lyses infected tumor cells and releases viral progeny for propagation of infection and resultant lysis of neighboring cancer cells, sparing normal host cells. However, to date there have been two main limitations to successful clinical application of these CRAd agents: poor infectivity and poor tumor specificity. Here we report the construction of a CRAd agent, CRAd-CXCR4.F5/3, in which the adenovirus E1 gene is driven by a tumor-specific CXCR4 promoter, and the viral infectivity is enhanced by a fiber modification, F5/3, containing an Ad3 knob chimeric fiber protein. As expected, this agent improved both of the viral infectivity and tumor specificity as evaluated in established SCCHN tumor cell lines and in primary tumor tissues from multiple patients. As an added benefit, the activity of the CXCR4 promoter was low in human liver as described previously. Based on these data, the CRAd-CXCR4.F5/3 is a promising novel CRAd agent for SCCHN targeting with low host toxicity.

Download full-text PDF

Source

Publication Analysis

Top Keywords

squamous cell
8
cell carcinomas
8
carcinomas head
8
head neck
8
crad agents
8
tumor cells
8
tumor specificity
8
crad agent
8
cxcr4 promoter
8
viral infectivity
8

Similar Publications

T-helper 17 (Th17) cells significantly influence the onset and advancement of malignancies. This study endeavor focused on delineating molecular classifications and developing a prognostic signature grounded in Th17 cell differentiation-related genes (TCDRGs) using machine learning algorithms in head and neck squamous cell carcinoma (HNSCC). A consensus clustering approach was applied to The Cancer Genome Atlas-HNSCC cohort based on TCDRGs, followed by an examination of differential gene expression using the limma package.

View Article and Find Full Text PDF

Diverse autoinhibitory mechanisms of FIIND-containing proteins: Insight into regulation of NLRP1 and CARD8 inflammasome.

PLoS Pathog

January 2025

Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Function-to-find domain (FIIND)-containing proteins, including NLRP1 and CARD8, are vital components of the inflammasome signaling pathway, critical for the innate immune response. These proteins exist in various forms due to autoproteolysis within the FIIND domain, resulting in full-length (FL), cleaved N-terminal (NT), and cleaved C-terminal (CT) peptides, which form autoinhibitory complexes in the steady state. However, the detailed mechanism remains elusive.

View Article and Find Full Text PDF

Background: Machupo virus (MACV) is a New World mammarenavirus (hereafter referred to as "arenavirus") and the etiologic agent of Bolivian hemorrhagic fever (BHF). No vaccine or antiviral therapy exists for BHF, which causes up to 35% mortality in humans. New World arenaviruses evolve separately in different locations.

View Article and Find Full Text PDF

Oxygen controls most metazoan metabolism, yet in mammals, tissue O levels vary widely. While extensive research has explored cellular responses to hypoxia, understanding how cells respond to physiologically high O levels remains uncertain. To address this problem, we investigated respiratory epithelia as their contact with air exposes them to some of the highest O levels in the body.

View Article and Find Full Text PDF

This study identifies the secondary metabolites from Alternaria alternate and evaluates their ACE-2: Spike RBD (SARS-CoV-2) inhibitory activity confirmed via immunoblotting in human lung microvascular endothelial cells. In addition, their in vitro anti-inflammatory potential was assessed using a cell-based assay in LPS-treated RAW 264.7 macrophage cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!