A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

HDAC6 at the intersection of autophagy, the ubiquitin-proteasome system and neurodegeneration. | LitMetric

The two major intracellular catabolic pathways, the ubiquitin-proteasome system (UPS) and macroautophagy (autophagy), have each been implicated as playing roles in neurodegenerative proteinopathies. We have investigated the relationship between the UPS and autophagy using Drosophila models of neurodegenerative diseases. We identified histone deacetylase 6 (HDAC6) as a genetic modifier of polyglutamine-induced neurodegeneration and determined that its mechanism of action is autophagy-dependent. The ability of HDAC6 to suppress degeneration has been extended to additional neurodegenerative disease models, including a fly model expressing pathological Abeta fragments, presented here, but is not a universal modifier of degenerative phenotypes. Importantly, HDAC6 was also found to suppress degeneration associated with proteasome mutations in an autophagy-dependent manner, revealing a compensatory relationship between these two degradation pathways. Our findings indicate that HDAC6 facilitates degradation of potentially noxious protein substrates, contributing vitally to the neuroprotective role of autophagy.

Download full-text PDF

Source
http://dx.doi.org/10.4161/auto.5050DOI Listing

Publication Analysis

Top Keywords

ubiquitin-proteasome system
8
hdac6 suppress
8
suppress degeneration
8
hdac6
5
hdac6 intersection
4
autophagy
4
intersection autophagy
4
autophagy ubiquitin-proteasome
4
system neurodegeneration
4
neurodegeneration major
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!