To analyze the laboratory data by data mining, user-centered universal tools have not been available in medicine. We analyzed 1,565,877 laboratory data of 771 patients with viral hepatitis in order to find the difference of the temporal changes in laboratory test data between Hepatitis B and Hepatitis C by the combination of temporal abstraction and data mining. The data for one patient is temporal for more than 5 years. After pretreatment the data was converted to abstract patterns and then selected into sets of data combination and rules to identify Hepatitis B or C by D2MS and LUPC which were originally produced by ourselves. Not only data pattern, but also temporal relations were considered as a part of the rules. In the course of evaluating the results by domain experts, even though there were not so remarkable hypotheses, visualization tools made it easier for them to understand the relations of the complicated rules.
Download full-text PDF |
Source |
---|
J Med Internet Res
January 2025
School of Management, Hefei University of Technology, Hefei, China.
Background: In online mental health communities, the interactions among members can significantly reduce their psychological distress and enhance their mental well-being. The overall quality of support from others varies due to differences in people's capacities to help others. This results in some support seekers' needs being met, while others remain unresolved.
View Article and Find Full Text PDFPLoS One
January 2025
Nanjing University of Science and Technology, Jiangsu, China.
Student performance is crucial for addressing learning process problems and is also an important factor in measuring learning outcomes. The ability to improve educational systems using data knowledge has driven the development of the field of educational data mining research. Here, this paper proposes a machine learning method for the prediction of student performance based on online learning.
View Article and Find Full Text PDFDig Dis Sci
January 2025
Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment With Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China.
Background And Aims: Alcoholic liver disease (ALD) is the leading cause of death among alcohol-related diseases, yet its pathogenesis remains incompletely understood. This article employs data mining methods to conduct an indepth study of articles on ALD published in the past three decades, aiming to elucidate the pathogenesis of ALD.
Methods: Firstly, articles related to the pathogenesis of ALD were retrieved from the Web of Science (WOS) database.
Sci Rep
January 2025
EIAS Data Science Lab, College of Computer and Information Sciences, Prince Sultan University, 11586, Riyadh, Saudi Arabia.
During the Covid-19 pandemic, the widespread use of social media platforms has facilitated the dissemination of information, fake news, and propaganda, serving as a vital source of self-reported symptoms related to Covid-19. Existing graph-based models, such as Graph Neural Networks (GNNs), have achieved notable success in Natural Language Processing (NLP). However, utilizing GNN-based models for propaganda detection remains challenging because of the challenges related to mining distinct word interactions and storing nonconsecutive and broad contextual data.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Department of Chemistry, Thomas J. R. Faulkner College of Science and Technology University of Liberia Monrovia Montserrado County Liberia.
Citronellol (CT) is a naturally occurring lipophilic monoterpenoid which has shown anticancer effects in numerous cancerous cell lines. This study was, therefore, designed to examine CT's potential as an anticancer agent against glioblastoma (GBM). Network pharmacology analysis was employed to identify potential anticancer targets of CT.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!