The production of a mature B cell requires passage through a number of developmental checkpoints. The pre-BCR plays a critical role in passage through the pro-B cell/pre-B cell checkpoint, and thus plays a central role in regulating the differentiation of a B cell. Due to the significance of this receptor, it is imperative that pre-BCR expression and function are precisely regulated. In this study, we have investigated a system in which the regulation of the pre-BCR is altered. We have found that continued expression of components of the pre-BCR (lambda5) resulted in a delay in the kinetics of B cell maturation. Pro-B cells from normal mouse bone marrow retrovirally infected with lambda5 exhibited a delay in differentiation. As compared with wild-type cells at the same time point, there is a reduction in the presence of cell surface markers that indicate developmental progression, and there is a 6- to 16-fold decrease in the production of Ig-positive cells in B cell maturation assays. The capacity to alter B cell progression by modifying and extending pre-BCR expression argues that the receptor and its associated signals play a unique role in directing developmental outcomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.179.8.4996 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!