Pyrrolopyrimidine, a novel scaffold, allows to adjust interactions within the S3 subsite of cathepsin K. The core intermediate 10 facilitated the P3 optimization and identified highly potent and selective cathepsin K inhibitors 11-20.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2007.09.047DOI Listing

Publication Analysis

Top Keywords

novel scaffold
8
cathepsin inhibitors
8
scaffold cathepsin
4
inhibitors pyrrolopyrimidine
4
pyrrolopyrimidine novel
4
scaffold allows
4
allows adjust
4
adjust interactions
4
interactions subsite
4
subsite cathepsin
4

Similar Publications

Unfolding the Potential of Pyrrole- and Indole-Based Allylidene Hydrazine Carboximidamides as Antimicrobial Agents.

ACS Infect Dis

January 2025

Pharmaceutical Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Vidya Vihar 333031, (RJ) India.

Antimicrobial drug resistance is a significant global health challenge, causing hundreds of thousands of deaths annually and severely impacting healthcare systems worldwide. Several reported antimicrobial compounds have a guanidine motif, as the positive charge on guanidine promotes cell lysis. Therefore, pyrrole- and indole-based allylidene hydrazine carboximidamide derivatives with guanidine motifs are proposed as antimicrobial agents that mimic cationic antimicrobial peptides (CAMPs).

View Article and Find Full Text PDF

Identification of a Chemical Probe for BLT2 Activation by Scaffold Hopping.

J Med Chem

January 2025

Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, Frankfurt am Main 60596, Germany.

The leukotriene B4 receptor 2 (BLT2) is a G-protein coupled receptor, which is endogenously activated by 12()-hydroxyheptadeca-5Z,8E,10E-trienoic acid (12-HHT). BLT2 is gaining attention as a potential therapeutic target involved in various pathologies including diabetic wound healing, ophthalmic diseases, and colitis. However, validation of BLT2 as drug target requires chemical probes and pharmacological tools which will allow for application in vivo.

View Article and Find Full Text PDF

Electrospinning based biomaterials for biomimetic fabrication, bioactive protein delivery and wound regenerative repair.

Regen Biomater

December 2024

Department of Trauma Surgery, Orthopaedic Surgery and Plastic Surgery, University Medical Center Göttingen, University of Göttingen, Göttingen 37075, Germany.

Electrospinning is a remarkably straightforward and adaptable technique that can be employed to process an array of synthetic and natural materials, resulting in the production of nanoscale fibers. It has emerged as a novel technique for biomedical applications and has gained increasing popularity in the research community in recent times. In the context of tissue repair and tissue engineering, there is a growing tendency toward the integration of biomimetic scaffolds and bioactive macromolecules, particularly proteins and growth factors.

View Article and Find Full Text PDF

The advent of bioprinting has enabled the creation of precise three-dimensional (3D) cell cultures suitable for biomimetic in vitro models. In this study, we developed a novel protocol for 3D printing methacrylated collagen (ColMa, or PhotoCol®) combined with tendon stem/progenitor cells (hTSPCs) derived from human tendon explants. Although pure ColMa has not previously been proposed as a printable hydrogel, this paper outlines a robust and highly reproducible pipeline for bioprinting this material.

View Article and Find Full Text PDF

Honeycomb-Shaped Collagen Aerogels Formed Using a Multichannel Hydrogel as the Template.

Langmuir

January 2025

Department of Chemistry and Applied Chemistry, Saga University, 1 Honjo, Saga City, Saga 840-8502, Japan.

This study introduces a novel method for fabricating multicavity, honeycomb-shaped collagen aerogels characterized by continuous pores. We have taken a unique approach to lyophilizing collagen hydrogels, which are UV-irradiated collagen solutions gelatinized in a carbonate buffer solution. The focus of this study was to investigate the effect of UV irradiation times on collagen solutions on collagen hydrogels and aerogels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!