During live fire training exercises, large amounts of explosives are consumed. Low order detonations of high explosive payloads result in the patchy dispersal of particles of high explosive formulations over large areas of firing range soils. Dissolution of explosives from explosive formulation particles into soil pore water is a controlling factor for transport, fate, and effects of explosive compounds. We developed an empirical method to evaluate soils based on functionally defined effective dissolution rates. An automated Accelerated Solvent Extractor was used to determine the effective elution rates under controlled conditions of RDX and TNT from soil columns containing particles of Comp B. Contrived soils containing selected soil geosorbants and reactive surfaces were used to quantitatively determine the importance of these materials. Natural soils from training ranges of various soil types were also evaluated. The effects of geosorbants on effective elution rates were compound- and sorbent-specific. TNT elution was less than that of RDX and was greatly slowed by humic acid. Iron and iron-bearing clays reduced the effective elution rates of both RDX and TNT. This empirical method is a useful tool for directly generating data on the potential for explosives to leach from firing range soils, to identify general bulk soil characteristics that can be used to predict the potential, and to identify means to engineer soil treatments to mitigate potential transport.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2007.08.044DOI Listing

Publication Analysis

Top Keywords

effective elution
16
rdx tnt
12
elution rates
12
elution rdx
8
particles comp
8
high explosive
8
firing range
8
range soils
8
empirical method
8
soil
7

Similar Publications

Background: The genus Metlapilcoatlus was recently erected to include six species of stout venomous snakes, known as the jumping pitvipers, which inhabit mountainous areas of Mesoamerica. This group maintains affinity with Atropoides picadoi, another jumping pitviper with restricted distribution in Costa Rica and Panama. Although the venom of A.

View Article and Find Full Text PDF

Background: Because of the limitations in new-generation drug-eluting stents (DES), treatments advocating for non-stents with a drug-coated balloon (DCB) is now of great interest. Here, we conducted a meta-analysis to testify whether a DCB was more effective and safer than a DES in treating de novo coronary artery disease (CAD).

Methods: We searched PubMed, Embase, Cochrane Library, and Web of Science to obtain high-quality trials comparing DCB with DES for the treatment of de novo CAD.

View Article and Find Full Text PDF

Background: Despite significant reductions in in-stent restenosis (ISR) incidence with the adoption of drug-eluting stents (DES) over bare metal stents (BMS), ISR remains an unresolved issue in the DES era. The risk factors associated with DES-ISR have not been thoroughly analyzed. This meta-analysis aims to identify the key factors and quantify their impact on DES-ISR.

View Article and Find Full Text PDF

In this study, we extended a previously developed one-pot double derivatization reaction to establish the first routine isotope-coded multiplex derivatization for vitamin D and its metabolites for application in clinical environments, using commercial reagents, without the need for specialized reagents and advanced synthesis requirements. The original derivatization process consisted of using both a Cookson-type reagent and derivatization of hydroxyl groups. Initially, the analytes are derivatized by a Diels-Alder reaction using 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD), followed by acetylation using acetic anhydride, catalyzed by 4-dimethylaminopyridine at room temperature.

View Article and Find Full Text PDF

A novel environmentally friendly adsorbent, poly(limonene--divinylbenzene--2-acrylamido-2-methyl-1-propanesulfonic acid, LIM--DVB--AMPS), was synthesized and applied for the adsorption of methylene blue from aqueous solutions in this study. The structure, morphology, and thermal stability of the green adsorbent were determined by the FTIR, SEM, TGA/DTA/DTG, and BET techniques, ζ potential, and elemental analysis. The efficiency of the adsorption process was improved with respect to several experimental conditions, viz.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!