In fluorescence correlation spectroscopy (FCS), an accurate evaluation of the probe volume is the basis of correct interpretation of experimental data and solution of an appropriate diffusion model. Poor fitting convergence has been a problem in the determination of the dimensional parameters, the beam radius, omega, and the distance along the optical axis of the probe volume, l. In this work, the instability of fitting during the calibration process is investigated by examining the chi(2) surfaces. We demonstrate that the minimum of chi(2) in the omega dimension is well defined for both converging and diverging data. The difficulty of fitting comes from the l dimension. The uncertainty in l could be significantly larger than that in omega, as determined by F-statistics. A modified calibration process is recommended based on examining two data treatment methods, combining several short data sets into a single long run and averaging the correlation functions of several short data sets. It is found that by using the mean of several converging correlation functions from short data sets instead of a long time correlation, more stable and consistent dimensional parameters are extracted to define the probe volume.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1366/000370207781745883 | DOI Listing |
Cardiovasc Eng Technol
January 2025
Institute for Medical Engineering and Science, Massachusetts Institute of Technology, MA, Cambridge, USA.
Purpose: Atrial fibrillation (AF) is the most common chronic cardiac arrhythmia that increases the risk of stroke, primarily due to thrombus formation in the left atrial appendage (LAA). Left atrial appendage occlusion (LAAO) devices offer an alternative to oral anticoagulation for stroke prevention. However, the complex and variable anatomy of the LAA presents significant challenges to device design and deployment.
View Article and Find Full Text PDFMucus plays an integral role for the barrier function of many epithelial tissues. In the human airways, mucus is constantly secreted to capture inhaled microbes and pollutants and cleared away through concerted ciliary motion. Many important respiratory diseases exhibit altered mucus flowability and impaired clearance, contributing to respiratory distress and increased risk of infections.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Electrical and Computer Engineering, and Department of Physics and Astronomy, University of California, Los Angeles, CA, 90095, USA.
In the burgeoning field of spintronics, antiferromagnetic materials (AFMs) are attracting significant attention for their potential to enable ultra-fast, energy-efficient devices. Thin films of AFMs are particularly promising for practical applications due to their compatibility with spin-orbit torque (SOT) mechanisms. However, studying these thin films presents challenges, primarily due to the weak signals they produce and the rapid dynamics driven by SOT, that are too fast for conventional electric transport or microwave techniques to capture.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Cardiovascular Medicine, Binzhou Medical University Hospital, 256603 Binzhou, Shandong, China.
Background: Cellular vacuolization is a commonly observed phenomenon under physiological and pathological conditions. However, the mechanisms underlying vacuole formation remain largely unresolved.
Methods: LysoTracker Deep Red probes and Enhanced Green Fluorescent Protein-tagged light chain 3B (LC3B) plasmids were employed to differentiate the types of massive vacuoles.
Pharmaceutics
January 2025
Department of Pharmaceutical Sciences, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
: Tamoxifen (TAM) is an anti-breast cancer drug suffering from acquired resistance development, prompting cancer relapse. Propranolol (PRO)'s repurposing for cancer therapy has gained interest. This work aimed to investigate combined TAM/PRO therapy for potentiating the anti-breast cancer activity of TAM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!