Antibody-protein interactions: benchmark datasets and prediction tools evaluation.

BMC Struct Biol

San Diego Supercomputer Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.

Published: October 2007

Background: The ability to predict antibody binding sites (aka antigenic determinants or B-cell epitopes) for a given protein is a precursor to new vaccine design and diagnostics. Among the various methods of B-cell epitope identification X-ray crystallography is one of the most reliable methods. Using these experimental data computational methods exist for B-cell epitope prediction. As the number of structures of antibody-protein complexes grows, further interest in prediction methods using 3D structure is anticipated. This work aims to establish a benchmark for 3D structure-based epitope prediction methods.

Results: Two B-cell epitope benchmark datasets inferred from the 3D structures of antibody-protein complexes were defined. The first is a dataset of 62 representative 3D structures of protein antigens with inferred structural epitopes. The second is a dataset of 82 structures of antibody-protein complexes containing different structural epitopes. Using these datasets, eight web-servers developed for antibody and protein binding sites prediction have been evaluated. In no method did performance exceed a 40% precision and 46% recall. The values of the area under the receiver operating characteristic curve for the evaluated methods were about 0.6 for ConSurf, DiscoTope, and PPI-PRED methods and above 0.65 but not exceeding 0.70 for protein-protein docking methods when the best of the top ten models for the bound docking were considered; the remaining methods performed close to random. The benchmark datasets are included as a supplement to this paper.

Conclusion: It may be possible to improve epitope prediction methods through training on datasets which include only immune epitopes and through utilizing more features characterizing epitopes, for example, the evolutionary conservation score. Notwithstanding, overall poor performance may reflect the generality of antigenicity and hence the inability to decipher B-cell epitopes as an intrinsic feature of the protein. It is an open question as to whether ultimately discriminatory features can be found.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2174481PMC
http://dx.doi.org/10.1186/1472-6807-7-64DOI Listing

Publication Analysis

Top Keywords

benchmark datasets
12
b-cell epitope
12
epitope prediction
12
structures antibody-protein
12
antibody-protein complexes
12
methods
9
binding sites
8
b-cell epitopes
8
prediction methods
8
structural epitopes
8

Similar Publications

Over the past decade, there has been a global increase in the incidence of skin cancers. Skin cancer has serious consequences if left untreated, potentially leading to more advanced cancer stages. In recent years, deep learning based convolutional neural network have emerged as powerful tools for skin cancer detection.

View Article and Find Full Text PDF

The integration of artificial intelligence (AI) into new approach methods (NAMs) for toxicology rep-resents a paradigm shift in chemical safety assessment. Harnessing AI appropriately has enormous potential to streamline validation efforts. This review explores the challenges, opportunities, and future directions for validating AI-based NAMs, highlighting their transformative potential while acknowledging the complexities involved in their implementation and acceptance.

View Article and Find Full Text PDF

Clouds reduce downwelling longwave radiation over land in a warming climate.

Nature

January 2025

Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada.

Clouds greatly influence the Earth's energy balance. Observationally constraining cloud radiative feedback, a notably uncertain climate feedback mechanism, is crucial for improving predictions of climate change but, so far, remains an elusive objective, and the feedback may be different over the ocean versus over land. Here we show a local negative surface longwave cloud feedback over land at the southern Great Plains site, constrained by direct long-term observation of spectrally resolved downwelling longwave radiance.

View Article and Find Full Text PDF

Feature enhanced cascading attention network for lightweight image super-resolution.

Sci Rep

January 2025

Zhongyu (Fujian) Digital Technology Co., Ltd, Fuzhou, 350108, China.

Attention mechanisms have been introduced to exploit deep-level information for image restoration by capturing feature dependencies. However, existing attention mechanisms often have limited perceptual capabilities and are incompatible with low-power devices due to computational resource constraints. Therefore, we propose a feature enhanced cascading attention network (FECAN) that introduces a novel feature enhanced cascading attention (FECA) mechanism, consisting of enhanced shuffle attention (ESA) and multi-scale large separable kernel attention (MLSKA).

View Article and Find Full Text PDF

Accurately segmenting remote sensing images remains challenging due to the diverse target scales and ambiguous structural boundaries. In this work, we propose a semi-supervised boundary segmentation network (BS-GAN) to address these challenges. BS-GAN employs a semi-supervised learning approach to reduce dependency on labeled data while introducing a novel mixed attention (MA) mechanism to enhance segmentation accuracy by aggregating long-range contextual information.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!