Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja0742784 | DOI Listing |
Natl Sci Rev
February 2025
Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
Electrocatalytic urea synthesis from CO and nitrate holds immense promise as a sustainable strategy, but its complicated synthesis steps and controversial C-N coupling mechanism restrict the design of efficient catalysts. Atomically precise metal cluster materials are ideal model catalysts for investigating the C-N coupling issues. Here we synthesize two atomically precise bimetallic clusters, AgPd(PTFE)(TPP) and AgAu(PTFE)(DPPP), both with icosahedral cores and similar ligands.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
The electrocatalytic nitrogen reduction reaction (eNRR) is an attractive strategy for the green and distributed production of ammonia (NH); however, it suffers from weak N adsorption and a high energy barrier of hydrogenation. Atomically dispersed metal dual-site catalysts with an optimized electronic structure and exceptional catalytic activity are expected to be competent for knotty hydrogenation reactions including the eNRR. Inspired by the bimetallic FeMo cofactor in biological nitrogenase, herein, an atomically dispersed FeMo dual site anchored in nitrogen-doped carbon is proposed to induce a favorable electronic structure and binding energy.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Departamento de Química Física Aplicada, Universidad Autónoma de Madrid (UAM), C/Francisco Tomás y Valiente 7, 28049 Madrid, Spain.
Chemistry
January 2025
School of Chemistry and Chemical Engineering, Lingnan Normal University, 524048, Zhanjiang, China.
The development of Pd-based bimetallic nanoalloys (NAs) with abundant active sites for achieving highly efficient electrocatalysis in alcohol oxidation deserves continuous attention. Herein, we utilized a facile visible-light-assisted liquid-phase method involving adjusting reaction time to generate active sites, successfully synthesizing one-dimensional (1D) PdAg NAs rich in defects. The optimized 1D PdAg NA exhibits remarkable electrochemical activity, stability, and antipoisonous properties in glycerol oxidation reaction (GOR) and ethanol oxidation reaction (EOR), far exceeding pure Pd and commercial Pd/C catalysts.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.
In the electrocatalytic (EC) degradation process, challenges such as inefficient mass transfer, suboptimal mineralization rates, and limited current efficiency have restricted its broader application. To overcome these obstacles, this study synthesized spherical particle electrodes (FeNi@BC) with superior electrocatalytic performance using a bio-inspired preparation method. A three-dimensional electrocatalytic oxidation system based on FeNi@BC electrode, EC/FeNi@BC, showed excellent degradation efficiency of sulfamethoxazole (SMX), reaching 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!