Hydrothermal chemistry has been exploited in the preparation of a series of manganese(II), iron(II), and nickel(II) triazolate frameworks, [Mn7(trz)8(CH3CO2)4(OH)2].2.5H2O (1.2.5H2O), [Mn5(Htrz)2(SO4)4(OH)2] (2), [Fe5(Htrz)2(SO4)4(OH)2] (3), [Fe3(Htrz)3(HSO4)(SO4)2(OH)].H2O (4.H2O), [Ni3(trz)3(OH)3(H2O)4].5H2O (5.5H2O), and [Ni3(trz)5(OH)].2.5H2O (6.2.5H2O). The materials all exhibit three-dimensional structures, reflecting the tendency of triazole/triazolate ligands to bridge multiple metal sites. A prominent characteristic of the structures is the presence of embedded metal clusters as building blocks: heptanuclear MnII units in 1, pentanuclear MII sites in 2 and 3, and trinuclear MII clusters in 4 and 5. The presence of the pentanuclear and trinuclear clusters of magnetic metal cations in 2-5 is reflected in the unusual magnetic characteristics of these materials, all of which exhibit spin frustration. The compound 5.5H2O reversibly desorbs/sorbs solvent. However, the dehydrated phase does not adsorb methanol, N2, O2, or H2, presumably as a consequence of the highly polar void volume and the narrow channels connecting the larger cavities of the void structure.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic700790hDOI Listing

Publication Analysis

Top Keywords

materials exhibit
8
hydrothermal synthesis
4
synthesis structural
4
structural chemistry
4
chemistry magnetic
4
magnetic properties
4
properties materials
4
materials mii/triazolate/anion
4
mii/triazolate/anion family
4
family mii
4

Similar Publications

Article Synopsis
  • Researchers propose a new method for creating multiple shape memory polymers (SMPs) by mixing immiscible polymers under high pressure and shear, rather than traditional blending techniques.
  • This approach allows for nanoscale homogeneity (40-95 nm) in the blends, improving both shape memory and mechanical performance.
  • The study focused on a blend of polypropylene (PP) and polystyrene (PS), demonstrating that the processed blend achieves a strong triple shape memory effect with high shape fixation and recoverability, along with adjustable transition temperatures.
View Article and Find Full Text PDF

Aim: Ultrasonography (US) has shown accuracy in imaging healthy periodontium. This study aims to evaluate the feasibility and accuracy of US for estimating dimensions of inflamed periodontium induced by ligature and bacteria.

Methods: Periodontal tissues of maxillary as well as mandibular premolars and molars in six female mini pigs were treated with ligature and three strains of bacteria for 4-10 weeks.

View Article and Find Full Text PDF

Fit accuracy and fracture resistance evaluation of advanced lithium disilicate crowns (in- vitro study).

BMC Oral Health

January 2025

Division of Fixed Prosthodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.

Background: Increasing demand for durable and aesthetically pleasing dental restorations, including laminates, inlays, onlays, and crowns, has led to advancements in all-ceramic systems, particularly with the development of advanced lithium disilicate materials. However, limited data on the fit accuracy and fracture resistance of these materials restricts their wider application in clinical restorative practices.

Aim Of The Study: This in vitro study aims to compare the marginal and internal fit, assess the fracture resistance, and evaluate the failure modes of crowns fabricated from advanced and conventional lithium disilicate materials.

View Article and Find Full Text PDF

Comparison of mechanical properties and shaping performance of ProGlider and ProTaper ultimate slider.

BMC Oral Health

January 2025

Department of Conservative Dentistry, College of Dentistry, Kyung Hee University, 26-6, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02453, Republic of Korea.

Background: This study aims to compare design, phase transformation behavior, and torsional resistance of the ProGlider (PG) and ProTaper ultimate slider (PUS) and to compare the performance of two files in the glide-path preparation of a double-curved artificial canal.

Methods: Scanning electron microscopy, micro-computed tomography, and differential scanning calorimetry were used to characterize the samples. A torsional resistance test was performed to obtain ultimate strength and distortion angle.

View Article and Find Full Text PDF

Triply periodic minimal surface (TPMS) metamaterials show promise for thermal management systems but are challenging to integrate into existing packaging with strict mechanical requirements. Composite TPMS lattices may offer more control over thermal and mechanical properties through material and geometric tuning. Here, we fabricate copper-plated, 3D-printed triply periodic minimal surface primitive lattices and evaluate their suitability for battery thermal management systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!