A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Using mouse models to explore genotype-phenotype relationship in Down syndrome. | LitMetric

Using mouse models to explore genotype-phenotype relationship in Down syndrome.

Ment Retard Dev Disabil Res Rev

Department of Neurology and Neurological Sciences, Neuroscience Institute at Stanford, Stanford University, Stanford, California 94305, USA.

Published: April 2008

Down Syndrome (DS) caused by trisomy 21 is characterized by a variety of phenotypes and involves multiple organs. Sequencing of human chromosome 21 (HSA21) and subsequently of its orthologues on mouse chromosome 16 have created an unprecedented opportunity to explore the complex relationship between various DS phenotypes and the extra copy of approximately 300 genes on HSA21. Advances in genetics together with the ability to generate genetically well-defined mouse models have been instrumental in understanding the relationships between genotype and phenotype in DS. Indeed, elucidation of these relationships will play an important role in understanding the pathophysiological basis of this disorder and helping to develop therapeutic interventions. A successful example of using such a strategy is our recent studies exploring the relationship between failed nerve growth factor (NGF) transport and amyloid precursor protein (App) overexpression. We found that increased dosage of the gene for App is linked to failed NGF signaling and cholinergic neurodegeneration in a mouse model of DS. Herein, we discuss several mouse models of DS and explore the emergence of exciting new insights into genotype-phenotype relationships, particularly those related to nervous system abnormalities. An important conclusion is that uncovering these relationships is enhanced by working from carefully defined phenotypes to the genes responsible.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrdd.20164DOI Listing

Publication Analysis

Top Keywords

mouse models
12
models explore
8
mouse
5
explore genotype-phenotype
4
genotype-phenotype relationship
4
relationship syndrome
4
syndrome syndrome
4
syndrome caused
4
caused trisomy
4
trisomy characterized
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!