Varicella-zoster virus infection induces the secretion of interleukin-8.

Med Microbiol Immunol

Institute of Microbiology and Virology, Private University Witten/Herdecke gGmbH, Stockumer Strasse 10, Witten, Germany.

Published: September 2008

Interleukin-8 (IL-8) is an important mediator in neutrophil-mediated acute inflammation but has also a wide range of actions on various cells types. We demonstrated that infection of melanoma cells and fibroblasts with cell-associated varicella-zoster virus (VZV) and infection of a T cell line with cell-free VZV resulted in an induction of IL-8 secretion in vitro. The inhibition of the VZV replication with a drug interfering with its DNA replication had no effect on the IL-8 release. Since the IL-8 promoter contains binding sites for NF-kappaB and AP-1, melanoma cells and the T cell line were treated with inhibitors of NF-kappaB, JNK/SAPK or p38/MAPK prior to infection. In melanoma cells, the JNK/SAPK pathway was shown to be important for the IL-8 secretion during the VZV replication, whereas in the T cell line, not only the JNK/SAPK but also the p38/MAPK pathways were required for IL-8 secretion. The neutralisation of the IL-8 bioactivity had no significant consequence on the VZV replication, suggesting that IL-8 acts neither as a proviral nor as an antiviral cytokine during the VZV replication in vitro.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00430-007-0060-3DOI Listing

Publication Analysis

Top Keywords

vzv replication
16
melanoma cells
12
il-8 secretion
12
varicella-zoster virus
8
il-8
8
infection melanoma
8
jnk/sapk p38/mapk
8
vzv
6
replication
5
infection
4

Similar Publications

Herpes simplex virus type 1 (HSV-1) acyclovir (ACV) resistance is acquired by mutations in the viral thymidine kinase (TK) or DNA polymerase (DNApol) genes. We previously obtained an ACV-resistant clone (HSV-1_VZV_TK_clone α) by sequential passages of HSV-1_VZV-TK, a recombinant virus which lacked its endogenous TK activity and instead expressed the varicella-zoster virus (VZV) TK ectopically. HSV-1_VZV_TK_clone α had been generated using an HSV-1_BAC in the presence of increasing concentrations of ACV.

View Article and Find Full Text PDF

Background: Despite established antiviral therapy for herpes simplex virus, varicella zoster and cytomegalovirus encephalitis, the outcome remains poor.

Objectives: To assess pharmacokinetic (PK) and pharmacodynamic (PD) data of antiviral drugs in the central nervous system (CNS) to optimize the treatment of Herpesviridae encephalitis.

Sources: PUBMED search 1950 to September 2024, terms (1) "encephalitis" and ("HSV" or "VZV" or "CMV") or (2) cerebrospinal and ("(val)acyclovir" or "(val)ganciclovir" or "foscarnet" or "cidofovir").

View Article and Find Full Text PDF

Varicella zoster virus (VZV) is the causative agent for chickenpox and herpes zoster (HZ, shingles). HZ is a debilitating disease affecting elderly and immunocompromised populations. Glycoprotein E (gE) is indispensable for viral replication and cell-to-cell spread and is the primary target for anti-VZV antibodies.

View Article and Find Full Text PDF

Reticulophagy and viral infection.

Autophagy

January 2025

Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.

Article Synopsis
  • All viruses rely on the host's cellular machinery to produce their proteins, specifically utilizing the endoplasmic reticulum (ER) in eukaryotic cells for this process.
  • Viruses can manipulate the ER to create structures for viral production while avoiding detection by the host's immune system.
  • Reticulophagy, a process that degrades ER components, acts as an antiviral defense mechanism (termed "xERophagy"), but viruses have also evolved ways to counteract this defense to enhance their replication.
View Article and Find Full Text PDF

Varicella-zoster virus (VZV) is the etiological agent of chickenpox and shingles, diseases characterised by epidermal virus replication in skin and mucosa and the formation of blisters. We have previously shown that VZV infection has a profound effect on keratinocyte differentiation, altering the normal pattern of epidermal gene expression. In particular, VZV infection reduces expression of suprabasal keratins 1 and 10 and desmosomal proteins, disrupting epidermal structure to promote expression of a blistering phenotype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!