This work aimed to study the transition from respiratory to fermentative metabolism in Saccharomyces cerevisiae CEN.PK 113-7D and more specifically to evaluate the implication of the acetyl-coenzymeA-derived carbon transport from cytosol to mitochondria in the onset of the metabolic shift. The strategy consisted in introducing, during aerobic glucose-limited chemostat (D = 0.16 h(-1)), [corrected] a local perturbation around the step to be studied by the addition of cosubstrate and in analyzing the consequences of such a perturbation on the metabolic transition. Oleic acid and L: -carnitine were among the tested cosubstrates because they were known to stimulate enzymes implicated in the acetyl-coenzymeA transport between the different cell compartments, such as the carnitine acetyl transferases. The metabolic transition was then comparatively quantified in sole glucose and in glucose/oleic acid chemostats in presence/absence of L: -carnitine after a pulse of glucose. Feeding the culture with oleic acid (D (ole) = 0.0041 and 0.0073 h(-1)) [corrected] led to a delay in the onset of the metabolic shift (up to 15 min), a 33% decrease in the ethanol production and a redirection of the carbon flux toward biomass production. The data clearly showed a modulation of the carbon distribution among respiration and fermentation, in favor of a decrease in the "short-term" Crabtree effect by the oleic acid.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-007-1161-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!