Corynebacterium glutamicum R efficiently produces valuable chemicals from glucose under oxygen-deprived conditions. In an effort to reduce acetate as a byproduct, acetate productivity of several mutant-disrupted genes encoding possible key enzymes for acetate formation was determined. Disruption of the aceE gene that encodes the E1 enzyme of the pyruvate dehydrogenase complex resulted in almost complete elimination of acetate formation under oxygen-deprived conditions, implying that acetate synthesis under these conditions was essentially via acetyl-coenzyme A (CoA). Simultaneous disruption of pta, encoding phosphotransacetylase, and ack, encoding acetate kinase, resulted in no measurable change in acetate productivity. A mutant strain with disruptions in pta, ack and as-yet uncharacterized gene (cgR2472) exhibited 65% reduced acetate productivity compared to the parental strain, although a single disruption of cgR2472 exhibited no effect on acetate productivity. The gene cgR2472 was shown to encode a CoA-transferase (CTF) that catalyzes the formation of acetate from acetyl-CoA. These results indicate that PTA-ACK as well as CTF is involved in acetate production in C. glutamicum. This study provided basic information to reduce acetate production under oxygen-deprived conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-007-1199-y | DOI Listing |
Sci Rep
January 2025
Shri Dharmasthala Manjunatheshwara (SDM) University, Manjushree Nagar, Sattur, Dharwad, Karnataka, 580009, India.
In oxygen-deprived conditions, cells respond by activating adaptive mechanisms to bolster their survival and protect tissue integrity. A key player in this process is the HIF-1α signaling cascade, meticulously regulated by Prolyl Hydroxylase Domain 2 (PHD2), which orchestrates cellular responses to varying oxygen levels. The primary aim of this investigation is to utilize gut siderophores as inhibitors of PHD2 in ischemic conditions.
View Article and Find Full Text PDFBiochim Biophys Acta Rev Cancer
February 2025
i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; Department of Biological Sciences, FFUP - Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal. Electronic address:
In the past years, increasing attention has been paid to the role of extracellular vesicles (EVs) as mediators of intercellular communication in cancer. These small size particles mediate the intercellular transfer of important bioactive molecules involved in malignant initiation and progression. Hypoxia, or low partial pressure of oxygen, is recognized as a remarkable feature of solid tumors and has been demonstrated to exert a profound impact on tumor prognosis and therapeutic efficacy.
View Article and Find Full Text PDFFree Radic Biol Med
February 2025
Department of Surgery, University of Missouri Kansas City School of Medicine, Kansas City, MO, USA.
Nitric oxide plays a critical role in regulating vascular tone, but excessive nitric oxide release during septic shock results in hypotension due to excessive vasodilation and the formation of toxic free radicals. VBI-S is a phospholipid nanoparticle based fluid composed of lipid bilayers formed primarily by phosphatidylcholine and micelles of soybean oil encapsulated by a monolayer of phosphatidylcholine. These nanoparticles offer a novel solution by absorbing and redistributing nitric oxide and nitrite, potentially mitigating the harmful effects of excessive nitric oxide in sepsis.
View Article and Find Full Text PDFFEMS Microbiol Ecol
November 2024
Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria.
Microbial soil habitats are characterized by rapid shifts in substrate and nutrient availabilities, as well as chemical and physical parameters. One such parameter that can vary in soil is oxygen; thus, microbial survival is dependent on adaptation to this substrate. To better understand the metabolic abilities and adaptive strategies to oxygen-deprived environments, we combined genomics with transcriptomics of a model organism, Acidobacterium capsulatum, to explore the effect of decreasing, environmentally relevant oxygen concentrations.
View Article and Find Full Text PDFBiomed Pharmacother
November 2024
Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary; Doctoral School of Semmelweis University, Budapest, Hungary.
The poor vascularization of solid tumors results in oxygen-deprived areas within the tumor mass. This phenomenon is defined as tumor hypoxia and is considered to be a major contributor to tumor progression in breast and ovarian cancers due to hypoxia-cascade-promoted increased metastasizing capacity. Hence, targeting hypoxia is a strategic cancer treatment approach, however, the hypoxia-modulating drugs face several limitations in monotherapies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!