Diffusion tensor imaging (DTI) can visualize the white matter tracts in vivo. The aim of this study was to assess the clinical utility of DTI in patients with diseases of the spinal cord. Fourteen subjects underwent magnetic resonance imaging of the spine at 1.5 T. Preliminary diagnosis of the patients suggested traumatic, tumorous, ischemic or inflammatory lesions of the spinal cord. In addition to T2-weighted images, DTI was performed with the gradients in 30 orthogonal directions. Maps of the apparent diffusion coefficient and of fractional anisotropy were reconstructed. Diffusion tensor imaging showed a clear displacement and deformation of the white matter tracts at the level of the pathological lesions in the spinal cord. This capability of diffusion tensor imaging to reliably display secondary alterations to the white matter tracts caused by the primary lesion has the potential to be of great utility for treatment planning and follow-up.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00234-007-0309-yDOI Listing

Publication Analysis

Top Keywords

diffusion tensor
16
spinal cord
16
tensor imaging
12
white matter
12
matter tracts
12
lesions spinal
8
diffusion
5
clinical applications
4
applications diffusion
4
tensor
4

Similar Publications

Objectives: To investigate glymphatic function in idiopathic normal pressure hydrocephalus (iNPH) using the diffusion tensor image analysis along the perivascular space (DTI-ALPS) method and to explore the associations of ALPS index with ventriculomegaly and white matter hyperintensities (WMH).

Materials And Methods: This study included 41 patients with iNPH and 40 age- and sex-matched normal controls (NCs). All participants underwent brain MRI.

View Article and Find Full Text PDF

Reward Decision Network Disconnection in Poststroke Apathy: A Prospective Multimodality Imaging Study.

Hum Brain Mapp

February 2025

Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.

Apathy is a common neuropsychiatric symptom following stroke, characterized by reduced goal-directed behavior. The reward decision network (RDN), which plays a crucial role in regulating goal-directed behaviors, is closely associated with apathy. However, the relationship between poststroke apathy (PSA) and RDN dysfunction remains unclear due to apathy heterogeneity, the confounding effect of depression and individual variability in lesion impacts.

View Article and Find Full Text PDF

Connectional differences between humans and macaques in the MT+ complex.

iScience

January 2025

State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.

MT+ is pivotal in the dorsal visual stream, encoding tool-use characteristics such as motion speed and direction. Despite its conservation between humans and monkeys, differences in MT+ spatial location and organization may lead to divergent, yet unexplored, connectivity patterns and functional characteristics. Using diffusion tensor imaging, we examined the structural connectivity of MT+ subregions in macaques and humans.

View Article and Find Full Text PDF

Objective: To investigate differences in the microstructure of the spinothalamic tract (STT) white matter in people with chronic neck and shoulder pain (CNSP) using diffusion tensor imaging, and to assess its correlation with pain intensity and duration of the pain.

Materials And Methods: A 3.0T MRI scanner was used to perform diffusion tensor imaging scans on 31 people with CNSP and 24 healthy controls (HCs), employing the Automatic Fiber Segmentation and Quantification (AFQ) method to extract the STT and quantitatively analyze the fractional anisotropy (FA) and mean diffusivity (MD), reflecting the microstructural integrity of nerve fibers.

View Article and Find Full Text PDF

Combination of structural and functional brain connectivity methods provides a more complete and effective avenue into the investigation of cortical network responses to traumatic brain injury (TBI) and subtle alterations in brain connectivity associated with TBI. Structural connectivity (SC) can be measured using diffusion tensor imaging to evaluate white matter integrity, whereas functional connectivity (FC) can be studied by examining functional correlations within or between functional networks. In this study, the alterations of SC and FC were assessed for TBI patients, with and without chronic symptoms (TBIcs/TBIncs), compared with a healthy control group (CG).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!