The understanding of mitochondrial functioning is of prime importance since it combines the production of energy as adenosine triphosphate (ATP) with an efficient chain of redox reactions, but also with the unavoidable production of reactive oxygen species (ROS) involved in aging. Mitochondrial respiration may be uncoupled from ATP synthesis by a proton leak induced by the thermogenic uncoupling protein 1 (UCP1). Mild uncoupling activity, as proposed for UCP2, UCP3, and avian UCP could theoretically control ROS production, but the nature of their transport activities is far from being definitively understood. The recent discovery of a UCP1 gene in fish has balanced the evolutionary view of uncoupling protein history. The thermogenic proton transport of mammalian UCP1 seems now to be a late evolutionary characteristic and the hypothesis that ancestral UCPs may carry other substrates is tempting. Using in silico genome analyses among taxa and a biochemical approach, we present a detailed phylogenetic analysis of UCPs and investigate whether avian UCP is a good candidate for pleiotropic mitochondrial activities, knowing that only one UCP has been characterized in the avian genome, unlike all other vertebrates. We show, here, that the avian class seems to be the only vertebrate lineage lacking two of the UCP1/2/3 homologues present in fish and mammals. We suggest, based on phylogenetic evidence and synteny of the UCP genes, that birds have lost UCP1 and UCP2. The phylogeny also supports the history of two rounds of duplication during vertebrate evolution. The avian uncoupling protein then represents a unique opportunity to explore how UCPs' activities are controlled, but also to understand why birds exhibit such a particular relationship between high metabolism and slow rate of aging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00239-007-9020-1 | DOI Listing |
Anim Biotechnol
November 2024
Animal and Poultry Production, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt.
Ginger rich in polyphenols, possesses various biomedical properties. Researchers investigated the effects of dietary ginger supplementation on turkey performance traits, biochemical parameters, haematological parameters and mRNA gene expression. Ginger root powder was administered at different doses (0, 10, 20 and 40 g/kg) to the turkeys.
View Article and Find Full Text PDFBr Poult Sci
October 2024
Tangshan Animal Disease Prevention and Control Center, Thangshan, Hebei, China.
1. Exposure to stress alters normal homoeostasis and, hence, the antioxidant defence system. The aim of this study was to examine the effect of acute cold temperature on the antioxidant defence system in hens.
View Article and Find Full Text PDFMicrob Pathog
December 2024
Department of Zoology, Division of Science & Technology, University of Education, Township, Lahore, Pakistan.
Sci Total Environ
September 2024
Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; Universidade Católica Portuguesa, Católica Medical School, Católica Biomedical Research Centre, Portugal; Climate amplified diseases and epidemics (CLIMADE) Europe, Portugal. Electronic address:
Poult Sci
June 2024
Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Alexandria University, Alexandria 21944, Egypt.
Three hundred one-day-old Avian 48 broiler chicks were used to investigate the effect of lignocellulose (LC) and probiotic supplementation in broiler chicken diet on growth performance, digestive health, litter quality, and some gene expression. Experimental treatments consisted of 3 × 2 factorial arrangements with 3 levels of LC without or with probiotics to formulate 6 experimental groups. Groups 1, 2, and 3 were fed on the basal diet with dietary LC inclusion at 0, 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!