Kaposi's sarcoma herpesvirus-encoded latency-associated nuclear antigen stabilizes intracellular activated Notch by targeting the Sel10 protein.

Proc Natl Acad Sci U S A

Department of Microbiology and Tumor Virology Program of Abramson Comprehensive Cancer Center, University of Pennsylvania Medical School, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA.

Published: October 2007

Deregulation of the evolutionarily conserved Notch signaling is highly correlated with oncogenesis. Intracellular activated Notch (ICN) is a protooncogene linked to the transcription activation of a number of cellular genes involved in cell cycle regulation, differentiation, and proliferation. Stability of ICN is tightly regulated by the Sel10-mediated ubiquitin-proteasome pathway. Sel10 can function as a negative regulator of Notch and exhibits activities of a tumor-suppressor protein. This article shows that the Kaposi's sarcoma-associated herpesvirus (KSHV) latency-associated nuclear antigen (LANA) directly interacts with Sel10 and forms a complex in KSHV-infected cells. This results in suppression of ICN ubiquitination and degradation. The carboxyl terminus of LANA interacts with the F-box and WD40 domains of Sel10 and competes with ICN for binding to Sel10. This elevated level of ICN is also critical for maintaining the enhanced proliferation of KSHV-infected tumor cells. These findings describe a mechanism by which the KSHV-encoded LANA protein regulates ubiquitination of ICN mediated by the F-box component of the E3 ligase Sel10, leading to proliferation of the virus-infected cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1997218PMC
http://dx.doi.org/10.1073/pnas.0703508104DOI Listing

Publication Analysis

Top Keywords

latency-associated nuclear
8
nuclear antigen
8
intracellular activated
8
activated notch
8
sel10
6
icn
6
kaposi's sarcoma
4
sarcoma herpesvirus-encoded
4
herpesvirus-encoded latency-associated
4
antigen stabilizes
4

Similar Publications

A LANA peptide inhibits tumor growth by inducing CHD4 protein cleavage and triggers cell death.

Cell Chem Biol

November 2024

Department of Dermatology, School of Medicine, University of California Davis (UC Davis), Sacramento, CA 95817, USA; Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA. Electronic address:

Kaposi's sarcoma-associated herpesvirus (KSHV) establishes a latent infection, and viral genes are poised to be transcribed in the latent chromatin. In the poised chromatins, KSHV latency-associated nuclear antigen (LANA) interacts with cellular chromodomain-helicase-DNA-binding protein 4 (CHD4) and inhibits viral promoter activation. CHD4 is known to regulate cell differentiation by preventing enhancers from activating promoters.

View Article and Find Full Text PDF

Ubiquitin-Mediated Effects on Oncogenesis during EBV and KSHV Infection.

Viruses

September 2024

Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA.

Article Synopsis
  • The Epstein-Barr Virus (EBV) and Kaposi Sarcoma-associated Herpesvirus (KSHV) are both cancer-causing viruses that utilize host cellular mechanisms to promote their replication and the development of cancer.
  • EBV infects around 90% of people globally and is linked to several cancers like Burkitt lymphoma and nasopharyngeal carcinoma, manipulating ubiquitin pathways to enhance cell proliferation and evade apoptosis.
  • KSHV, responsible for Kaposi's Sarcoma, also employs similar ubiquitin-mediated strategies to degrade tumor suppressors and evade immune responses, making both viruses significant in understanding viral oncogenesis and potential cancer therapies.
View Article and Find Full Text PDF

Background And Purpose: Classic Kaposi sarcoma (CKS) is a rare vascular disease mainly found in populations of Mediterranean origin. The pathogenesis involves Human Herpes Virus 8 (HHV8) and genetic mutations such as SNP309 in the MDM2 gene. The recently discovered BPTF mutation in cells of CKS patients demonstrated higher latency-associated nuclear antigen (LANA) staining and altered vital transcriptomics, implicating a potential role in tumorigenesis.

View Article and Find Full Text PDF
Article Synopsis
  • Kaposi sarcoma (KS) is a cancer linked to abnormal blood vessel growth, primarily caused by the Kaposi sarcoma herpesvirus (KSHV) found in specialized tumor cells.
  • Researchers have developed a method to grow patient-derived KS tumors in mice, allowing them to maintain the KSHV infection and tumor characteristics for extended periods, which is crucial for studying the disease.
  • The study found that the resulting tumors displayed increased density of KSHV-infected cells, higher proliferation rates, and maintained gene expressions associated with KS, indicating that these mouse models can help in understanding the disease and testing new treatments.
View Article and Find Full Text PDF

Kaposi's sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA virus that encodes numerous cellular homologs, including cyclin D, G protein-coupled protein, interleukin-6, and macrophage inflammatory proteins 1 and 2. KSHV vCyclin encoded by ORF72, is the homolog of cellular cyclinD2. KSHV vCyclin can regulate virus replication and cell proliferation by constitutively activating cellular cyclin-dependent kinase 6 (CDK6).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!