AI Article Synopsis

Article Abstract

The down-regulation of the catalytic subunit of the mitochondrial H+-ATP synthase (beta-F1-ATPase) is a hallmark of most human carcinomas. This characteristic of the cancer cell provides a proteomic signature of cellular bioenergetics that can predict the prognosis of colon, lung, and breast cancer patients. Here we show that the in vivo tumor glucose uptake of lung carcinomas, as assessed by positron emission tomography in 110 patients using 2-deoxy-2-[18F]fluoro-d-glucose as probe, inversely correlates with the bioenergetic signature determined by immunohistochemical analysis in tumor surgical specimens. Further, we show that inhibition of the activity of oxidative phosphorylation by incubation of cancer cells with oligomycin triggers a rapid increase in their rates of aerobic glycolysis. Moreover, we show that the cellular expression level of the beta-F1-ATPase protein of mitochondrial oxidative phosphorylation inversely correlates (P < 0.001) with the rates of aerobic glycolysis in cancer cells. The results highlight the relevance of the alteration of the bioenergetic function of mitochondria for glucose capture and consumption by aerobic glycolysis in carcinomas.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-07-1678DOI Listing

Publication Analysis

Top Keywords

aerobic glycolysis
12
inversely correlates
8
oxidative phosphorylation
8
cancer cells
8
rates aerobic
8
loss mitochondrial
4
mitochondrial bioenergetic
4
bioenergetic capacity
4
capacity underlies
4
underlies glucose
4

Similar Publications

Prostate cancer, the second leading cause of cancer-related mortality in men, exhibits distinct metabolic reprogramming involving zinc and citrate metabolism. This study investigated whether targeting this unique metabolic profile could offer an effective therapeutic approach. A series of novel oxindole derivatives were synthesized and evaluated for their inhibitory effects on transcription factors (TFs) and antiproliferative activity across various cancer cell lines.

View Article and Find Full Text PDF

Background: Boswellic acid (BA) is a bioactive compound derived from Boswellia trees. This study aims to investigate the anti-cancer properties of BA against KB oral squamous cancer cells and elucidate the underlying mechanisms.

Methods: Escalating doses of BA were administered to KB cells, and various analyses were conducted using bioinformatic tools such as GEO, GEO2R, and STITCH database.

View Article and Find Full Text PDF

In most solid tumors, cellular energy metabolism is primarily dominated by aerobic glycolysis, which fulfills the high demand for biomacromolecules at the expense of reduced ATP production efficiency. Elucidation of the mechanisms by which rapidly proliferating malignant cells acquire sufficient energy in this state of inefficient ATP production from glycolysis could enable development of metabolism targeted therapeutic strategies. In this study, we observed a significant association between elevated expression levels of the long non-coding RNA (lncRNA) SNHG17 and unfavorable prognosis in breast cancer (BCa).

View Article and Find Full Text PDF

Cancer is caused by complex interactions between genetic, environmental, and lifestyle factors, making prevention strategies, including exercise, a promising avenue for intervention. Physical activity is associated with reduced cancer incidence and progression and systemic anti-cancer effects, including improved tumor suppression and prolonged survival in preclinical models. Exercise impacts the body's nutrient balance and stimulates the release of several exercise-induced factors into circulation.

View Article and Find Full Text PDF

Timing of exercise differentially impacts adipose tissue gain in male adolescent rats.

Mol Metab

January 2025

Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain; Institute of Biomedical Research of Murcia, Virgen de la Arrixaca University Hospital, Murcia, Spain. Electronic address:

Circadian rhythms of metabolic, hormonal, and behavioral fluctuations and their alterations can impact health. An important gap in knowledge in the field is whether the time of the day of exercise and the age of onset of exercise exert distinct effects at the level of whole-body adipose tissue and body composition. The goal of the present study was to determine how exercise at different times of the day during adolescence impacts the adipose tissue transcriptome and content in a rodent model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!