Background: Atraumatic restorative treatment (ART) is recommended for use worldwide, not only in developing countries where resources are not readily available, but also in more industrialized countries. The antibacterial properties of restorative dental materials may improve the restorative treatment outcome. Glass ionomer cement (GIC) has been advocated as the preferred restoration material for ART. The authors evaluated the antibacterial properties of restorative materials-three GICs and a zinc oxide eugenol (ZOE)-in vitro.

Methods: Streptococcus mutans, Actinomyces viscosus and Enterococcus faecalis were the test microorganisms. The authors used a quantitative microtiter spectrophotometric assay to evaluate the antibacterial effect of the restorative materials using the direct contact test (DCT) of freshly prepared and one-week-aged materials.

Results: The freshly prepared GICs and ZOE showed no bacterial growth in all tested bacteria compared with a control. This effect lasted for at least one week for S. mutans and A. viscosus but not for E. faecalis.

Conclusions: Conventional GICs used in ART showed antibacterial surface properties against cariogenic bacteria for at least one week. Further study on the long-term antimicrobial effects of GICs is needed.

Clinical Implications: The antimicrobial properties of freshly prepared restorative materials and aged restorative materials used in ART have a potent effect against cariogenic bacteria. These properties have crucial importance in preventing secondary caries.

Download full-text PDF

Source
http://dx.doi.org/10.14219/jada.archive.2007.0051DOI Listing

Publication Analysis

Top Keywords

antibacterial properties
12
restorative treatment
12
restorative materials
12
freshly prepared
12
glass ionomer
8
restorative
8
atraumatic restorative
8
properties restorative
8
cariogenic bacteria
8
properties
6

Similar Publications

Cotton textiles with persistent antibacterial qualities are crucial in halting the spread of bacteria and other infections. However, fugitive bacteria and drug-resistant pathogens have rendered tremendous challenges in the development of cotton fabrics with long-lasting antibacterial efficacy. The work aimed to innovatively propose a functional cotton fabric integrating intelligent bacteria-capturing and dual antibacterial properties for efficacious personal health management.

View Article and Find Full Text PDF

Photoactive complexes of bioessential 3d metals, activable within the phototherapeutic window (650-900 nm), have gained widespread interest due to their therapeutic potential. Herein, we report the synthesis, characterization, and light-enhanced anticancer and antibacterial properties of four new dinuclear Co(II) complexes: [Co(phen)(cat)] (Co-1), [Co(dppz)(cat)] (Co-2), [Co(phen)(esc)] (Co-3), and [Co(dppz)(esc)] (Co-4). In these complexes, phen (1,10-phenanthroline) and dppz (dipyrido[3,2-:2',3'-]phenazine) act as neutral N,N-donor ligands, while cat and esc serve as O,O-donor catecholate ligands derived from catechol (1,2-dihydroxybenzene) and esculetin (6,7-dihydroxy coumarin).

View Article and Find Full Text PDF

Traditionally, food packaging was used to extend the shelf life of food or to monitor its condition. Inspired by many biological structures found in nature, bio-inspired functional materials for bio-based food packaging have been shown to have significantly improved capabilities over traditional bio-based food packaging materials in various aspects and to attract consumers through novel freshness preservation features. This review synthesizes recent advances in bio-inspired bio-based food packaging materials that mimic the structure of natural organisms with specific functionalities, with examples of specific biomimetics in different enhancement areas.

View Article and Find Full Text PDF

Constructing Activatable Photosensitizers Using Covalently Modified Mesoporous Silica.

Adv Sci (Weinh)

January 2025

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China.

The combination of photosensitizers (PSs) and nanomaterials is a widely used strategy to enhance PS efficacy and broaden their applicability. However, the current nanocarrier-based delivery strategies focus on conventional PSs, neglecting the critical issue of PS phototoxicity. In this study, DHUOCl-25, an activatable PS (aPS) activated by hypochlorous acid, is synthesized by combining a silicon source structure and an activation unit.

View Article and Find Full Text PDF

Bioactive Sulfonamides Derived from Amino Acids: Their Synthesis and Pharmacological Activities.

Mini Rev Med Chem

January 2025

Department of Physiology and Pharmacology Vittorio Erspamer, Sapienza University of Rome, 00161, Rome, Italy.

Currently, the synthesis of bioactive sulfonamides using amino acid as a starting reagent has become an area of research interest in organic chemistry. Over the years, an amine-sulfonyl chloride reaction has been adopted as a common step in traditional sulfonamide synthetic methods. However, recent developments have shown amino acids to be better precursors than amines in the synthesis of sulfonamides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!