In type 2 diabetes, pancreatic beta cells fail to secrete sufficient insulin to overcome peripheral insulin resistance. Intracellular lipid accumulation contributes to beta cell failure through poorly defined mechanisms. Here we report a role for the lipid-regulated protein kinase C isoform PKCepsilon in beta cell dysfunction. Deletion of PKCepsilon augmented insulin secretion and prevented glucose intolerance in fat-fed mice. Importantly, a PKCepsilon-inhibitory peptide improved insulin availability and glucose tolerance in db/db mice with preexisting diabetes. Functional ablation of PKCepsilon selectively enhanced insulin release ex vivo from diabetic or lipid-pretreated islets and optimized the glucose-regulated lipid partitioning that amplifies the secretory response. Independently, PKCepsilon deletion also augmented insulin availability by reducing both whole-body insulin clearance and insulin uptake by hepatocytes. Our findings implicate PKCepsilon in the etiology of beta cell dysfunction and highlight that enhancement of insulin availability, through separate effects on liver and beta cells, provides a rationale for inhibiting PKCepsilon to treat type 2 diabetes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmet.2007.08.012 | DOI Listing |
J Exp Clin Cancer Res
January 2025
Clinical Medical College, Guizhou Medical University, Guizhou, Guiyang, 550004, People's Republic of China.
Eur J Med Res
January 2025
Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
Objectives: SOX10 is crucially implicated in various cancer, yet the regulatory role in pancreatic cancer (PC) remains enigmatic. Underlying molecular mechanisms of SOX10 in PC were explored in our study.
Methods: Relationships between SOX10 and immune landscape were estimated using bioinformatic approaches.
Cell Mol Biol Lett
January 2025
Department of Orthopaedics, Peking University Third Hospital, Peking University, No.49 NorthGarden Road, Haidian District, Beijing, 100191, Beijing, China.
Background: Epigenetic modifications have been proved to play important roles in the spinal degenerative diseases. As a type of noncoding RNA, the microRNA (miRNA) is a vital class of regulatory factor in the epigenetic modifications, while the role of miRNAs in the regulation of epigenetic modifications in ligamentum flavum hypertrophy (LFH) has not been fully investigated.
Methods: The miRNA sequencing analysis was used to explore the change of miRNA expression during the fibrosis of ligamentum flavum (LF) cells caused by the TGF-β1 (10 ng/ml).
Mol Cell Biochem
January 2025
Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
Chronic/heavy exposure with ethanol is associated with risk of type 2 diabetes, due to β-cells dysfunction. It has been reported that ethanol can induce oxidative stress directly or indirectly by involvement of mitochondria. We aimed to explore the protective effects of the crocin/gallic acid/L-alliin as natural antioxidants separately on ethanol-induced mitochondrial damage.
View Article and Find Full Text PDFNat Cell Biol
January 2025
Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
The protein homeostasis (proteostasis) network encompasses a myriad of mechanisms that maintain the integrity of the proteome by controlling various biological functions, including protein folding and degradation. Alas, ageing-associated decline in the efficiency of this network enables protein aggregation and consequently the development of late-onset neurodegenerative disorders, such as Alzheimer's disease. Accordingly, the maintenance of proteostasis through late stages of life bears the promise to delay the emergence of these devastating diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!