Unlabelled: Transcription-induced chimerism, a mechanism involving the transcription and intergenic splicing of two consecutive genes, has recently been estimated to account for approximately 5% of the human transcriptome. Despite this prevalence, the regulation and function of these fused transcripts remains largely uncharacterised.
Results: We identified three novel transcription-induced chimeras resulting from the intergenic splicing of a single RNA transcript incorporating the two neighbouring 3p21.3 tumour suppressor locus genes, RBM6 and RBM5, which encode the RNA Binding Motif protein 6 and RNA Binding Motif protein 5, respectively. Each of the three novel chimeric transcripts lacked exons 3, 6, 20 and 21 of RBM6 and exon 1 of RBM5. Differences between the transcripts were associated with the presence or absence of exon 4, exon 5 and a 17 nucleotide (nt) sequence from intron 10 of RBM6. All three chimeric transcripts incorporated the canonical splice sites from both genes (excluding the 17 nt intron 10 insertion). Differential expression was observed in tumour tissue compared to non-tumour tissue, and amongst tumour types. In breast tumour tissue, chimeric expression was associated with elevated levels of RBM6 and RBM5 mRNA, and increased tumour size. No protein expression was detected by in vitro transcription/translation.
Conclusion: These results suggest that RBM6 mRNA experiences altered co-transcriptional gene regulation in certain cancers. The results also suggest that RBM6-RBM5 transcription-induced chimerism might be a process that is linked to the tumour-associated increased transcriptional activity of the RBM6 gene. It appears that none of the transcription-induced chimeras generates a protein product; however, the novel alternative splicing, which affects putative functional domains within exons 3, 6 and 11 of RBM6, does suggest that the generation of these chimeric transcripts has functional relevance. Finally, the association of chimeric expression with breast tumour size suggests that RBM6-RBM5 chimeric expression may be a potential tumour differentiation marker.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2174484 | PMC |
http://dx.doi.org/10.1186/1471-2164-8-348 | DOI Listing |
Int J Mol Sci
November 2024
Department of Neuroscience, McKnight Brain Institute, University of Florida, 1149 SW Newell Drive, Gainesville, FL 32610, USA.
Receptor-interacting serine/threonine protein kinase 2 (RIPK2) is a kinase that is essential in modulating innate and adaptive immune responses. As a downstream signaling molecule for nucleotide-binding oligomerization domain 1 (NOD1), NOD2, and Toll-like receptors (TLRs), it is implicated in the signaling triggered by recognition of microbe-associated molecular patterns by NOD1/2 and TLRs. Upon activation of these innate immune receptors, RIPK2 mediates the release of pro-inflammatory factors by activating mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB).
View Article and Find Full Text PDFbioRxiv
October 2024
Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
Receptor-interacting serine/threonine protein kinase 2 (RIPK2) is a kinase that plays an essential role in the modulation of innate and adaptive immune responses. As a downstream signaling molecule for nucleotide-binding oligomerization domain 1 (NOD1), NOD2, and Toll-like receptors (TLRs), it is implicated in the signaling triggered by recognition of microbe-associated molecular patterns by NOD1/2 and TLRs. Upon activation of these innate immune receptors, RIPK2 mediates the release of pro-inflammatory factors by activating mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB).
View Article and Find Full Text PDFAdv Mater
May 2024
State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
Proteolysis targeting chimera (PROTAC) has recently emerged as a promising strategy for inducing post-translational knockdown of target proteins in disease treatment. The degradation of bromodomain-containing protein 4 (BRD4), an essential nuclear protein for gene transcription, induced by PROTAC is proposed as an epigenetic approach to treat breast cancer. However, the poor membrane permeability and indiscriminate distribution of PROTAC in vivo results in low bioavailability, limiting its development and application.
View Article and Find Full Text PDFSci Rep
January 2019
Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
Osteosarcomas are characterized by highly disrupted genomes. Although osteosarcomas lack common fusions, we find evidence of many tumour specific gene-gene fusion transcripts, likely due to chromosomal rearrangements and expression of transcription-induced chimeras. Most of the fusions result in out-of-frame transcripts, potentially capable of producing long novel protein sequences and a plethora of neoantigens.
View Article and Find Full Text PDFBMC Cancer
March 2018
Department of Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
Background: As hybrid RNAs, transcription-induced chimeras (TICs) may have tumor-promoting properties, and some specific chimeras have become important diagnostic markers and therapeutic targets for cancer.
Methods: We examined 23 paired laryngeal cancer (LC) tissues and adjacent normal mucous membrane tissue samples (ANMMTs). Three of these pairs were used for comparative transcriptomic analysis using high-throughput sequencing.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!