Antifungal defensins, MsDef1 and MtDef4, from Medicago spp., inhibit the growth of a fungal pathogen, Fusarium graminearum, at micromolar concentrations. However, molecular mechanisms by which they inhibit the growth of this fungus are not known. We have characterized a functional role of the fungal sphingolipid glucosylceramide in regulating sensitivity of the fungus to MsDef1 and MtDef4. A null mutation of the FgGCS1 gene encoding glucosylceramide synthase results in a mutant lacking glucosylceramide. The DeltaFggcs1-null mutant becomes resistant to MsDef1, but not to MtDef4. It shows a significant change in the conidial morphology and displays dramatic polar growth defect, and its mycelia are resistant to cell wall degrading enzymes. Contrary to its essential role in the pathogenicity of a human fungal pathogen, Cryptococcus neoformans, GCS1 is not required for the pathogenicity of F. graminearum. The DeltaFggcs1 mutant successfully colonizes wheat heads and corn silk, but its ability to spread in these tissues is significantly reduced as compared with the wild-type PH-1 strain. In contrast, it retains full virulence on tomato fruits and Arabidopsis thaliana floral and foliar tissues. Based on our findings, we conclude that glucosylceramide is essential for MsDef1-mediated growth inhibition of F. graminearum, but its role in fungal pathogenesis is host-dependent.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2958.2007.05955.xDOI Listing

Publication Analysis

Top Keywords

msdef1 mtdef4
12
glucosylceramide synthase
8
growth inhibition
8
fusarium graminearum
8
inhibit growth
8
fungal pathogen
8
role fungal
8
glucosylceramide
5
growth
5
synthase essential
4

Similar Publications

Aflatoxin contamination in peanuts poses major challenges for vulnerable populations of sub-Saharan Africa and South Asia. Developing peanut varieties to combat preharvest Aspergillus flavus infection and resulting aflatoxin contamination has thus far remained a major challenge, confounded by highly complex peanut-Aspergilli pathosystem. Our study reports achieving a high level of resistance in peanut by overexpressing (OE) antifungal plant defensins MsDef1 and MtDef4.

View Article and Find Full Text PDF

Antifungal plant defensins: mechanisms of action and production.

Molecules

August 2014

Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, Heverlee 3001, Belgium.

Plant defensins are small, cysteine-rich peptides that possess biological activity towards a broad range of organisms. Their activity is primarily directed against fungi, but bactericidal and insecticidal actions have also been reported. The mode of action of various antifungal plant defensins has been studied extensively during the last decades and several of their fungal targets have been identified to date.

View Article and Find Full Text PDF

Specific domains of plant defensins differentially disrupt colony initiation, cell fusion and calcium homeostasis in Neurospora crassa.

Mol Microbiol

June 2014

Fungal Cell Biology Group, Institute of Cell Biology, University of Edinburgh, Edinburgh, EH9 3JH, UK; Manchester Fungal Infection Group, Institute of Inflammation and Repair, CTF Building, University of Manchester, Manchester, M13 9NT, UK.

MsDef1 and MtDef4 from Medicago spp. are small cysteine-rich defensins with potent antifungal activity against a broad range of filamentous fungi. Each defensin has a hallmark γ-core motif (GXCX(3-9) C), which contains major determinants of its antifungal activity.

View Article and Find Full Text PDF

Plant defensins are small cysteine-rich antimicrobial proteins. Their three-dimensional structures are similar in that they consist of an α-helix and three anti-parallel β-strands stabilized by four disulfide bonds. Plant defensins MsDef1 and MtDef4 are potent inhibitors of the growth of several filamentous fungi including Fusarium graminearum.

View Article and Find Full Text PDF

Antifungal defensins, MsDef1 and MtDef4, from Medicago spp., inhibit the growth of a fungal pathogen, Fusarium graminearum, at micromolar concentrations. However, molecular mechanisms by which they inhibit the growth of this fungus are not known.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!