A PEGylated glucagon-like peptide-1 (GLP-1) agonist and glucagon antagonist hybrid peptide was engineered as a potential treatment for type 2 diabetes. To support preclinical development of this PEGylated dual-acting peptide for diabetes (DAPD), we developed a reproducible method for PEGylation, purification, and analysis. Optimal conditions for site-specific PEGylation with 22 and 43 kDa maleimide-polyethylene glycol (maleimide-PEG) polymers were identified by evaluating pH, reaction time, and reactant molar ratio parameters. A 3-step purification process was developed and successfully implemented to purify PEGylated DAPD and remove excess uncoupled PEG and free peptide. Five lots of 43 kDa PEGylated DAPD with starting peptide amounts of 100 mg were produced with overall yields of 53% to 71%. Analytical characterization by N-terminal sequencing, amino acid analysis, matrix-assisted laser desorption/ionization mass spectrometry, and GLP-1 receptor activation assay confirmed site-specific attachment of PEG at the engineered cysteine residue, expected molecular weight, correct amino acid sequence and composition, and consistent functional activity. Purity and safety analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), analytical ion-exchange chromatography, reversed-phase high-performance liquid chromatography, and limulus amebocyte lysate test showed that the final products contained <1% free peptide, <5% uncoupled PEG, and <0.2 endotoxin units per milligram of peptide. These results demonstrate that the PEGylation and purification process we developed was consistent and effective in producing PEGylated DAPD preclinical materials at the 100 mg (peptide weight basis) or 1.2 g (drug substance weight basis) scale.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2751412 | PMC |
http://dx.doi.org/10.1208/aapsj0902025 | DOI Listing |
Front Immunol
April 2022
Division of Research, ReAlta Life Sciences, Norfolk, VA, United States.
The EPICC peptides are a family of peptides that have been developed from the sequence of the capsid protein of human astrovirus type 1 and previously shown to inhibit the classical and lectin pathways of complement. The EPICC peptides have been further optimized to increase aqueous solubility and identify additional mechanisms of action. Our laboratory has developed the lead EPICC molecule, PA-dPEG24 (also known as RLS-0071), which is composed of a 15 amino acid peptide with a C-terminal monodisperse 24-mer PEGylated moiety.
View Article and Find Full Text PDFAAPS J
June 2007
Bayer HealthCare Pharmaceuticals, Biotechnology, Berkeley, CA 94701, USA.
A PEGylated glucagon-like peptide-1 (GLP-1) agonist and glucagon antagonist hybrid peptide was engineered as a potential treatment for type 2 diabetes. To support preclinical development of this PEGylated dual-acting peptide for diabetes (DAPD), we developed a reproducible method for PEGylation, purification, and analysis. Optimal conditions for site-specific PEGylation with 22 and 43 kDa maleimide-polyethylene glycol (maleimide-PEG) polymers were identified by evaluating pH, reaction time, and reactant molar ratio parameters.
View Article and Find Full Text PDFJ Endocrinol
February 2007
Bayer HealthCare, Biotechnology, 800 Dwight Way, Berkeley, CA 94701, USA.
Type 2 diabetes is characterized by reduced insulin secretion from the pancreas and overproduction of glucose by the liver. Glucagon-like peptide-1 (GLP-1) promotes glucose-dependent insulin secretion from the pancreas, while glucagon promotes glucose output from the liver. Taking advantage of the homology between GLP-1 and glucagon, a GLP-1/glucagon hybrid peptide, dual-acting peptide for diabetes (DAPD), was identified with combined GLP-1 receptor agonist and glucagon receptor antagonist activity.
View Article and Find Full Text PDFJ Biol Chem
May 2006
Department of Biotechnology, Bayer HealthCare, California 94701, USA.
The closely related peptides glucagon-like peptide (GLP-1) and glucagon have opposing effects on blood glucose. GLP-1 induces glucose-dependent insulin secretion in the pancreas, whereas glucagon stimulates gluconeogenesis and glycogenolysis in the liver. The identification of a hybrid peptide acting as both a GLP-1 agonist and a glucagon antagonist would provide a novel approach for the treatment of type 2 diabetes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!