Ciprofloxacin (CIP) and metabolite concentrations in lung tissue, parietal pleura and bronchial tissue were assessed in 43 adult patients who underwent lung surgery. A single oral dose of CIP was given for prophylaxis of bacterial infections. Two to 6 h prior to tissues sampling, 23 patients received 250 mg and 20 subjects 500 mg of the substance. Blood plasma samples were obtained at the same time as the lung tissue samples. CIP and its metabolites were assayed chemically by high-pressure liquid chromatography (HPLC). After 250 mg CIP, the individual lung tissue CIP concentrations during the 2- to 6-hour post-dose period ranged from 0.5 to 4.8 mg/kg. In 20 of the 23 lung samples, the CIP concentrations were above 1 mg/kg. After 500 mg CIP, the corresponding lung CIP concentrations ranged from 1.6 to 6.0 mg/kg. The CIP lung concentrations were, irrespective of the dose size, between 2 and 7 times higher than the simultaneous blood plasma concentrations. This indicates an excellent penetration of CIP and its metabolites into lung tissue. Bronchial tissue was obtained in 9 cases. Penetration into bronchial mucosa tissue was good as well, as indicated by tissue/plasma ratio values between 1.5 and 4.4. Individual CIP concentrations in the patients given 250 mg CIP, ranged from 1.0 to 1.6 mg/kg. In the patients who received 500 mg, the range was from 1.7 to 3.4 mg/kg. Tissue/plasma ratio values between 0.8 and 2.1 indicated that penetration to pleural tissues was good as well. Metabolite concentrations in all of the tissues assayed (lung, bronchial mucosa, pleural tissue) were low when compared to the concentrations of CIP. The concentrations in lung, pleural and bronchial tissue will probably permit low doses in the treatment of most respiratory tract infections. The broad spectrum of antibacterial activity, the good tissue penetration, chemical stability and the good safety record of the substance means that the drug is potentially a useful agent for perioperative antibiotic prophylaxis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000238860 | DOI Listing |
Sci Total Environ
January 2025
Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia. Electronic address:
For the first time, using a chemical pollutant (an antibiotic) as a photosensitizer to improve the elimination of a microbiological contaminant of emerging concern (antibiotic-resistant bacteria) is presented. The effect of ciprofloxacin (CIP) on the inactivation of three light-promoted antibiotic-resistant bacteria (ARB) was evaluated. Ciprofloxacin-resistant Escherichia coli, ciprofloxacin-resistant Staphylococcus aureus, and carbapenem-resistant Klebsiella pneumoniae.
View Article and Find Full Text PDFEnviron Toxicol Chem
January 2025
Laboratorio de Ecotoxicología, Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina.
The combination of silver nanoparticles (AgNPs) and ciprofloxacin (CIP) can be considered an alternative to combat multidrug-resistant microbial infections. However, knowledge about their combined toxicity is scarce after being released in an aquatic environment. The present study evaluated the individual toxicity of AgNPs and CIP and their combined toxicity on the unicellular green microalga Chlorella vulgaris, evaluating cellular responses and conducting metabolomic analysis.
View Article and Find Full Text PDFFront Antibiot
April 2024
Department of Food Technology and Nutritional Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh.
Introduction: The misuse of antibiotics in poultry farming is a global issue.
Objective: The focus of this study was the health risk assessment of consumers from the determination of ciprofloxacin (CIP), tetracycline (TC), and oxytetracycline (OTC) in broiler chicken in the raw, frozen, and boiled stages using solid-phase extraction, high-performance liquid chromatography, and ultraviolet detection (SPE-HPLC-UV).
Materials And Methods: Chromatographic separation was achieved using 0.
Int J Biol Macromol
January 2025
State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, PR China; Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China; China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin University of Science and Technology, Tianjin 300457, PR China. Electronic address:
Developing sensitive and reliable methods for detecting antibiotics in water solutions is essential for protecting public health and the environment. Here, we report a novel fluorescent film with superior mechanical properties and detection response to ciprofloxacin (CIP), achieved through the in-situ growth of europium-based metal-organic frameworks on TEMPO-oxidized cellulose nanofibrils (TOCNF). Firstly, Eu(III) and 2,6-pyridinedicarboxylic acid (DPA) served as precursors, and a simple self-assembly strategy was employed to grow the composite film material (Eu-DPA@TOCNF) in situ on TOCNF, which exhibited characteristic emission peaks.
View Article and Find Full Text PDFHeliyon
January 2025
Institute of Chemistry, University of Tartu, 14a Ravila St., 50411, Tartu, Estonia.
Elevated concentrations of pharmaceutically active compounds (PhACs) in the water bodies are posing a serious threat to the aquatic microbiota and other organisms. In this context, anaerobic ammonium oxidizing (anammox) bacteria carry a great potential to degrade PhACs through their innate metabolic pathways. This study investigates the influence of short-term exposure to lower and higher concentrations (0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!