The molecular events, which govern growth control upon contact inhibition have not yet been clearly defined. Previous work has indicated that there is an increase in the expression of mitogen-activated protein kinase phosphatases (MKPs) upon the attainment of contact inhibition in normal fibroblasts, concurrently with a decrease in ERK activity. To investigate the potential role of p38 and JNK in the transition to a contact-inhibited state, normal human fibroblasts (BJ) were grown to subconfluent and confluent densities. The total levels and phosphorylation states of p38 and JNK were assayed, and were compared to protein levels seen in HT-1080 fibrosarcoma cells, which lack contact-inhibited growth control. Activation of JNK was not apparent in these cells, though p38 was found to be active in proliferating cells, but attenuated in contact-inhibited cultures. Such fluctuations in p38 activity were not seen in cultures of fibrosarcoma cells of increasing density. This alteration in p38 activity was also reflected by attenuated activation of the downstream transcription factor ATF-2 upon contact inhibition. Overexpression of MKP-1 in fibrosarcoma cells and fibroblasts reduced proliferation, while expression of a phosphatase-resistant p38 protein (p38(N316)) enhanced proliferation of normal fibroblasts. Taken together, these results suggest the involvement of negative regulation of p38 in contact-inhibited growth control.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11010-007-9613-4 | DOI Listing |
Molecules
December 2024
School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China.
Diamond grinding wheels have been widely used to remove the residual features of cast parts, such as parting lines and pouring risers. However, diamond grains are prone to chemical wear as a result of their strong interaction with ferrous metals. To mitigate this wear, this study proposes the use of a novel water-based hexagonal boron nitride (hBN) as a minimum quantity lubrication (MQL) during the grinding of cast steel and conducted the grinding experiment and molecular dynamics simulation.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy.
Red blood cells (RBCs) are the main cells of the blood, perform numerous functions within the body and are in continuous contact with endogenous and exogenous molecules. In this context, the study aims to investigate the effect of epicatechin (EC) (flavan-3-ols) on the erythrocytes, analyzing the protective effect of the molecule and the action exerted on metabolism and RBC membrane. The effect of EC on RBC viability has been evaluated through the change in hemolysis and methemoglobin, assessing caspase 3 activity and performing a cytofluorometric analysis.
View Article and Find Full Text PDFLife (Basel)
December 2024
Department of Plastic Surgery, Meir Medical Center, Kfar Saba 4428164, Israel.
Biofilm formation on prostheses and implanted devices can lead to serious complications and increased healthcare expenditures. Once formed, biofilm management is difficult and may involve a long course of antibiotics, additional surgery, and, occasionally, implant removal. This study evaluated the antibacterial properties of medical-grade silicone samples integrated with novel, non-leaching, antibacterial, quaternary ammonium silica (QASi) particles.
View Article and Find Full Text PDFOligodendrocytes are the myelinating cells of the central nervous system. Regulation of the early stages of oligodendrocyte development is critical to the function of the cell. Specifically, myelin sheath formation is an energetically demanding event that requires precision, as alterations may lead to dysmyelination.
View Article and Find Full Text PDFNat Struct Mol Biol
January 2025
Signalling and Structural Biology Laboratory, Francis Crick Institute, London, UK.
The mutually antagonistic relationship of atypical protein kinase C (aPKC) and partitioning-defective protein 6 (Par6) with the substrate lethal (2) giant larvae (Lgl) is essential for regulating polarity across many cell types. Although aPKC-Par6 phosphorylates Lgl at three serine sites to exclude it from the apical domain, aPKC-Par6 and Lgl paradoxically form a stable kinase-substrate complex, with conflicting roles proposed for Par6. We report the structure of human aPKCι-Par6α bound to full-length Llgl1, captured through an aPKCι docking site and a Par6 contact.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!