Grating mosaic based on image processing of far-field diffraction intensity patterns in two wavelengths.

Appl Opt

State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, China.

Published: October 2007

A practical grating mosaic method is proposed based on quantitative image processing of three far-field diffraction intensity patterns in two wavelengths. This method aims at making a perfect mosaic of two planar gratings that can substitute for a single and larger grating without introducing wavefront aberration at any wavelength. The zeroth-order and first-order far-field patterns of one wavelength are analyzed for separating and eliminating the angular mosaic errors. The first-order far-field patterns of two wavelengths are applied for separation of the lateral and longitudinal phase errors. Then the three patterns are considered together to enlarge the target range of coarse adjustment required for further fine adjustment in longitudinal position. Experimentally, angular and positional detection sensitivities of less than 6 microrad and 14 nm were achieved, respectively, and the periodicity in positional adjustment was checked, which departed less than 1.8% from the theoretical period. The performance of the perfect mosaic grating was diagnosed with the far-field diffraction intensity pattern in a third wavelength, and the necessity for a perfect mosaic was verified.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.46.007018DOI Listing

Publication Analysis

Top Keywords

far-field diffraction
12
diffraction intensity
12
patterns wavelengths
12
perfect mosaic
12
grating mosaic
8
image processing
8
intensity patterns
8
first-order far-field
8
far-field patterns
8
far-field
5

Similar Publications

Holographic displays have the potential to reconstruct natural light field information, making them highly promising for applications in augmented reality (AR), head-up displays (HUD), and new types of transparent three-dimensional (3D) displays. However, current spatial light modulators (SLMs) are constrained by pixel size and resolution, limiting display size. Additionally, existing holographic displays have narrow viewing angles due to device diffraction limits, algorithms, and optical configurations.

View Article and Find Full Text PDF

We propose an alternative data-free deep learning method using a physics-informed neural network (PINN) to enable more efficient computation of light diffraction from 3D optical metasurfaces, modeling of corresponding polarization effects, and wavefront manipulation. Our model learns only from the governing physics represented by vector Maxwell's equations, Floquet-Bloch boundary conditions, and perfectly matched layers (PML). PINN accurately simulates near-field and far-field responses, and the impact of polarization, meta-atom geometry, and illumination settings on the transmitted light.

View Article and Find Full Text PDF

Due to their advantages of compact geometries and lightweight, diffractive optical elements (DOEs) are attractive in various applications such as sensing, imaging and holographic display. When designing DOEs based on algorithms, a diffraction model is required to trace the diffracted light propagation and to predict the performance. To have more precise diffraction field tracing and optical performance simulation, different diffraction models have been proposed and developed.

View Article and Find Full Text PDF

Analytical solutions for acoustic vortex beams radiated by sources with uniform circular amplitude distributions are derived in the paraxial approximation. Evaluation of the Fresnel diffraction integral in the far field of an unfocused source and in the focal plane of a focused source leads to solutions in terms of an infinite series of Bessel functions for orbital numbers ℓ>-2. These solutions are reduced to closed forms for 0≤ℓ≤4, which correspond to orbital numbers commonly used in experiments.

View Article and Find Full Text PDF

Resolving structural misalignments on the nanoscale is of utmost importance in areas such as semiconductor device manufacturing. Metaphotonics provides a powerful toolbox to efficiently transduce information on the nanoscale into measurable far-field observables. In this work, we propose and demonstrate a novel interlaced displacement sensing platform based on diffractive anisotropic metasurfaces combined with polarimetric Fourier microscopy capable of resolving a few nanometer displacements within a device layer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!