Biomechanical studies often involve measurements of the strains developed in tendons or ligaments in posture or locomotion. Fiber-optic sensors present an attractive option for the measurement of strains in tendons and ligaments because of their low cost, ease of implementation, and increased accuracy compared with other implantable transducers. A new displacement sensor based on a fiber Bragg grating and shape memory alloy technology is proposed for the monitoring of tendon and ligament strains in different postures and in locomotion. After sensor calibration in the laboratory, a comparison of the fiber sensors and traditional camera displacement sensors was carried out to evaluate the performance of the fiber sensor during the application of tension to the Achilles tendon. Additional experiments were performed in cadaver knees to assess the suitability of these fiber sensors to measure ligament deformation in a variety of simulated postures. The results demonstrate that the proposed fiber Bragg grating sensor is a highly accurate, easily implantable, and minimally invasive method of measuring tendon and ligament displacement.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.46.006867DOI Listing

Publication Analysis

Top Keywords

fiber bragg
12
bragg grating
12
tendons ligaments
12
displacement sensor
8
tendon ligament
8
fiber sensors
8
fiber
6
sensor
5
displacement
4
grating displacement
4

Similar Publications

Utilizing Tissues Self-Assembled in Fiber Optic-Based "Chinese Guzheng Strings" for Contractility Sensing and Drug Efficacy Evaluation: A Practical Approach.

Small

January 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, Stem Cells and Tissue Engineering Manufacture Center, School of Life Science, Hubei University, Wuhan, Hubei, 430062, China.

Recent advances in drug design and compound synthesis have highlighted the increasing need for effective methods of toxicity evaluation. A specialized force sensor, known as the light wavelength-encoded "Chinese guzheng" is developed. This innovative sensor is equipped with optical fiber strings and utilizes a wavelength-encoded fiber Bragg grating (FBG) that is chemically etched to reduce its diameter.

View Article and Find Full Text PDF

A novel, to the best of our knowledge, optical fiber whispering-gallery mode (WGM) sensor for simultaneously measuring humidity and temperature is proposed and investigated. The proposed sensor is realized by a polyvinyl alcohol (PVA)-coated capillary tube coupling with an optical single-mode fiber (SMF), which is integrated with a fiber Bragg grating (FBG). The as-fabricated sensor can be used not only for relative humidity (RH) sensing but also for temperature detection.

View Article and Find Full Text PDF

Fiber Bragg grating (FBG) accelerometers are extensively utilized across various industries. For a high-performance FBG accelerometer interrogator, achieving low cost, wide range, multi-channel capability, high precision, and high-speed demodulation is critical. This paper proposes a chip-level wavelength demodulation method for FBG accelerometers utilizing a cascaded micro-ring resonator (MRR) array.

View Article and Find Full Text PDF

In naval engineering, particular attention has been given to containerships, as these structures are constantly exposed to potential damage during service hours and since they are essential for large-scale transportation. To assess the structural integrity of these ships and to ensure the safety of the crew and the cargo being transported, it is essential to adopt structural health monitoring (SHM) strategies that enable real-time evaluations of a ship's status. To achieve this, this paper introduces an advancement in the field of smart sensing and SHM that improves ship monitoring and diagnostic capabilities.

View Article and Find Full Text PDF

Radiofrequency ablation (RFA) is a minimally invasive procedure that utilizes localized heat to treat tumors by inducing localized tissue thermal damage. The present study aimed to evaluate the temperature evolution and spatial distribution, ablation size, and reproducibility of ablation zones in ex vivo liver, kidney, and lung using a commercial device, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!