We reported previously that young BioBreeding diabetes-prone (BBdp) rats display increased neogenic extra-islet insulin+ clusters (EICs, <4 insulin+ cells) without an increase in beta-cell mass. Therefore, we investigated the possibility that abnormal islet expansion occurs in BBdp rats before the appearance of islet inflammation. Islet expansion was analyzed in pancreata from 14 to 45 day BBdp and control (BioBreeding control, BBc) rats using immunohistochemistry, morphometry, laser capture microdissection and reverse transcriptase-PCR. mRNA expression for Neurogenin-3, a developmental marker of endocrine progenitors, was three-fold greater in EIC of weanling BBdp and BBc rats compared with islet cells. With increasing age (14-30 days), Neurogenin-3 expression decreased in EIC and increased in islets. In BBdp rats, EIC number and beta-cell proliferation within EIC was greater compared with BBc animals; apoptosis did not differ. The area of small and medium islets in BBdp rats was greater than BBc rats between 14 and 30 days, but this did not result in increased total islet area or beta-cell mass. In addition, the number and area of very large islets was low at 45 days. The frequency of proliferating beta-cells decreased with increasing islet size in BBdp but was constant in BBc rats. Cell cycle analysis of islets revealed more G1 cells and fewer G2 cells in BBdp rats. The ratio of cyclinD2/Cdkn1a, genes that respectively promote or inhibit cell cycle progression, was decreased in BBdp islets. These results suggest that despite increased islet neogenesis, the capacity for islet expansion in diabetes-prone rats is compromised possibly due to decreased proliferative capacity with increasing islet size associated with a partial block at the G1/S cell cycle boundary in islet cells.

Download full-text PDF

Source
http://dx.doi.org/10.1038/labinvest.3700687DOI Listing

Publication Analysis

Top Keywords

increased islet
8
islet neogenesis
4
neogenesis increased
4
islet mass
4
mass precedes
4
precedes autoimmune
4
autoimmune attack
4
attack diabetes-prone
4
diabetes-prone rats
4
rats reported
4

Similar Publications

The hypoglycemic effects of nateglinide (NTG) were examined in rats with acute peripheral inflammation (API) induced by carrageenan treatment, and the mechanisms accounting for altered hypoglycemic effects were investigated. NTG was administered through the femoral vein in control and API rats, and its plasma concentration profile was characterized. The time courses of the changes in plasma glucose and insulin levels were also examined.

View Article and Find Full Text PDF

Objective: Type1Screen offers islet autoantibody testing to Australians with a family history of type 1 diabetes (T1D) with the dual aims of preventing diabetic ketoacidosis (DKA) and enabling use of disease-modifying therapy. We describe screening and monitoring outcomes 2 years after implementing in-home capillary blood spot sampling.

Research Design And Methods: Data from 2,064 participants who registered between July 2022 and June 2024 were analyzed: 1,507 and 557 chose blood spot and venipuncture screening respectively.

View Article and Find Full Text PDF

Introduction: Type 1 diabetes is often accompanied by autoimmune thyroid disease. We aimed to investigate the clinical characteristics of Japanese patients with acute-onset type 1 diabetes and thyroid autoantibodies, focusing on decreased endogenous insulin secretion.

Materials And Methods: We examined 80 patients with acute-onset type 1 diabetes, classifying them into two groups with and without thyroid autoantibodies and compared the clinical characteristics of the two groups.

View Article and Find Full Text PDF

Differentiation, reduction, and proliferation of pancreatic β-cells and their regulatory factors.

Diabetol Int

January 2025

Clinical Research Department, Institute of Biomedical Research and Innovation (IBRI), Foundation for Biomedical Research and Innovation at Kobe (FBRI), 6-3-7 Minatojima Minami-machi, Chuo-ku, Kobe, Hyogo 650-0047 Japan.

The prevalence of diabetes has increased rapidly in recent years, and many types of therapeutic agents have been developed. However, the main purpose of these drugs is to lower blood glucose levels, and they are not fundamental solutions. In contrast, our research has been aimed at stimulating and inducing β-cell proliferation in vivo and replenishing β-cells.

View Article and Find Full Text PDF

Biphasic glucose-stimulated insulin secretion over decades: a journey from measurements and modeling to mechanistic insights.

Life Metab

February 2025

New Cornerstone Science Laboratory, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, National Biomedical Imaging Center, The Beijing Laboratory of Biomedical Imaging, Peking-Tsinghua Center for Life Sciences, School of Future Technology, Peking University, Beijing 100871, China.

Glucose-stimulated insulin release from pancreatic β-cells is critical for maintaining blood glucose homeostasis. An abrupt increase in blood glucose concentration evokes a rapid and transient rise in insulin secretion followed by a prolonged, slower phase. A diminished first phase is one of the earliest indicators of β-cell dysfunction in individuals predisposed to develop type 2 diabetes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!