The menace of endocrine disruptors on thyroid hormone physiology and their impact on intrauterine development.

Endocrine

Endocrine Unit, Second Department of Obstretics and Gynecology, Aretaieion Hospital, Athens University Medical School, Athens 10674, Greece.

Published: June 2007

The delivery of the appropriate thyroid hormones quantity to target tissues in euthyroidism is the result of unopposed synthesis, transport, metabolism, and excretion of these hormones. Thyroid hormones homeostasis depends on the maintenance of the circulating 'free' thyroid hormone reserves and on the development of a dynamic balance between the 'free' hormones reserves and those of the 'bound' hormones with the transport proteins. Disturbance of this hormone system, which is in constant interaction with other hormone systems, leads to an adaptational counter-response targeting to re-establish a new homeostatic equilibrium. An excessive disturbance is likely to result, however, in hypo- or hyper- thyroid clinical states. Endocrine disruptors are chemical substances forming part of 'natural' contaminating agents found in most ecosystems. There is abundant evidence that several key components of the thyroid hormones homeostasis are susceptible to the action of endocrine disruptors. These chemicals include some chlorinated organic compounds, polycyclic aromatic hydrocarbons, herbicides, and pharmaceutical agents. Intrauterine exposure to endocrine disruptors that either mimic or antagonize thyroid hormones can produce permanent developmental disorders in the structure and functioning of the brain, leading to behavioral changes. Steroid receptors are important determinants of the consequences of endocrine disruptors. Their interaction with thyroid hormones complicates the effect of endocrine disruptors. The aim of this review is to present the effect of endocrine disruptors on thyroid hormones physiology and their potential impact on intrauterine development.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12020-007-0030-yDOI Listing

Publication Analysis

Top Keywords

endocrine disruptors
28
thyroid hormones
24
thyroid
9
hormones
9
disruptors thyroid
8
thyroid hormone
8
impact intrauterine
8
intrauterine development
8
hormones homeostasis
8
disruptors
7

Similar Publications

Childhood obesity and central precocious puberty.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

July 2024

Second Ward of Endocrinology Department, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000.

Central precocious puberty (CPP) is an endocrine disorder in children caused by the early activation of the hypothalamic-pituitary-gonadal axis (HPGA), leading to elevated gonadotropin-releasing hormone (GnRH), which triggers the development of gonads and the secretion of sex hormones. This eventually results in the development of internal and external genitalia and secondary sexual characteristics. CPP significantly affects the physical and mental health of children and may increase the risk of various adult diseases.

View Article and Find Full Text PDF

Objectives: Perchlorates, nitrates, and thiocyanates constitute environmental endocrine disruptors; however, health damage caused by absorption through the respiratory tract remains poorly studied. We investigated the effects of inhalation of these pollutants on thyroid function and structure and serum metabolomics in pregnant rats.

Methods: We established a Sprague-Dawley pregnant rat model exposed to perchlorate, nitrate, and thiocyanate at different gestational stages and compared maternal serum thyroid function levels, foetal development, thyroid morphology, and pathological changes between exposed and non-exposed groups at different concentrations.

View Article and Find Full Text PDF

Impact of Endocrine Disruptors on Key Events of Hepatic Steatosis in HepG2 Cells.

Food Chem Toxicol

January 2025

RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic. Electronic address:

Endocrine-disrupting compounds (EDCs) may contribute to the rising incidence of metabolic dysfunction-associated steatotic liver disease (MASLD). We investigated the potential of 10 environmentally relevant EDCs to affect key events of hepatic steatosis in HepG2 human hepatoma cells. Increased lipid droplet formation, a key marker of steatosis, was induced by PFOA, bisphenol F, DDE, butylparaben, and DEHP, within the non-cytotoxic concentration range of 1 nM-25 μM.

View Article and Find Full Text PDF

Perfluorinated compounds linked to central precocious puberty in girls during COVID-19: an untargeted metabolomics study.

Front Endocrinol (Lausanne)

January 2025

Department of Pediatrics, Hainan Medical University School of Pediatrics, Hainan Women and Children's Medical Center, Haikou, Hainan, China.

Background And Objective: The incidence of central precocious puberty (CPP) in girls increased significantly during the COVID-19 pandemic. This study aimed to explore the impact of perfluorinated endocrine disruptors on CPP through metabolomics analysis in girls from Hainan Province, China.

Methods: Serum samples from 100 girls with CPP and 100 healthy controls were collected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!