Each intracellular organelle critically depends on maintaining its specific lipid composition that in turn contributes to the biophysical properties of the membrane. With our knowledge increasing about the organization of membranes with defined microdomains of different lipid compositions, questions arise regarding the molecular mechanisms that underlie the targeting to/segregation from microdomains of a given protein. In addition to specific lipid-transmembrane segment interactions as a basis for partitioning, the presence in a given microdomain may alter the conformation of proteins and, thus, the activity and availability for regulatory modifications. However, for most proteins, the specific lipid environment of transmembrane segments as well as its relevance to protein function and overall membrane organization are largely unknown. To help fill this gap, we have synthesized a novel photoactive sphingolipid precursor that, together with a precursor for phosphoglycerolipids and with photo-cholesterol, was investigated in vivo with regard to specific protein transmembrane span-lipid interactions. As a proof of principle, we show specific labeling of the ceramide transporter with the sphingolipid probe and describe specific in vivo interactions of lipids with caveolin-1, phosphatidylinositol transfer protein beta, and the mature form of nicastrin. This novel photolabile sphingolipid probe allows the detection of protein-sphingolipid interactions within the membrane bilayer of living cells.

Download full-text PDF

Source
http://dx.doi.org/10.1194/jlr.D700023-JLR200DOI Listing

Publication Analysis

Top Keywords

protein-sphingolipid interactions
8
specific lipid
8
sphingolipid probe
8
specific
6
interactions cellular
4
cellular membranes
4
membranes intracellular
4
intracellular organelle
4
organelle critically
4
critically depends
4

Similar Publications

Cell membranes contain hundreds to thousands of individual lipid species that are of structural importance but also specifically interact with proteins. Due to their highly controlled synthesis and role in signaling events sphingolipids are an intensely studied class of lipids. In order to investigate their metabolism and to study proteins interacting with sphingolipids, metabolic labeling based on photoactivatable sphingoid bases is the most straightforward approach.

View Article and Find Full Text PDF

Bifunctional Sphingosine for Cell-Based Analysis of Protein-Sphingolipid Interactions.

ACS Chem Biol

January 2016

European Molecular Biology Laboratory , Cell Biology and Biophysics Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany.

Sphingolipids are essential structural components of cellular membranes and are crucial regulators of cellular processes. While current high-throughput approaches allow for the systematic mapping of interactions of soluble proteins with their lipid-binding partners, photo-cross-linking is the only technique that enables for the proteome-wide mapping of integral membrane proteins with their direct lipid environment. Here, we report the synthesis of a photoactivatable and clickable analog of sphingosine (pacSph).

View Article and Find Full Text PDF

Sphingolipids as modulators of membrane proteins.

Biochim Biophys Acta

May 2014

Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany. Electronic address:

The diversity of the transmembranome of higher eukaryotes is matched by an enormous diversity of sphingolipid classes and molecular species. The intrinsic properties of sphingolipids are not only suited for orchestrating lateral architectures of biological membranes, but their molecular distinctions also allow for the evolution of protein motifs specifically recognising and interacting with individual lipids. Although various reports suggest a role of sphingolipids in membrane protein function, only a few cases have determined the specificity of these interactions.

View Article and Find Full Text PDF

Molecular insights into amyloid regulation by membrane cholesterol and sphingolipids: common mechanisms in neurodegenerative diseases.

Expert Rev Mol Med

September 2010

Laboratoire des Interactions Moléculaires et Systèmes Membranaires, Marseille, France.

Alzheimer, Parkinson and other neurodegenerative diseases involve a series of brain proteins, referred to as 'amyloidogenic proteins', with exceptional conformational plasticity and a high propensity for self-aggregation. Although the mechanisms by which amyloidogenic proteins kill neural cells are not fully understood, a common feature is the concentration of unstructured amyloidogenic monomers on bidimensional membrane lattices. Membrane-bound monomers undergo a series of lipid-dependent conformational changes, leading to the formation of oligomers of varying toxicity rich in beta-sheet structures (annular pores, amyloid fibrils) or in alpha-helix structures (transmembrane channels).

View Article and Find Full Text PDF

Each intracellular organelle critically depends on maintaining its specific lipid composition that in turn contributes to the biophysical properties of the membrane. With our knowledge increasing about the organization of membranes with defined microdomains of different lipid compositions, questions arise regarding the molecular mechanisms that underlie the targeting to/segregation from microdomains of a given protein. In addition to specific lipid-transmembrane segment interactions as a basis for partitioning, the presence in a given microdomain may alter the conformation of proteins and, thus, the activity and availability for regulatory modifications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!