Epithelial-specific Ets (ESE) transcription factors, consisting of ESE-1, ESE-2, and ESE-3, are constitutively expressed in distinct epithelia of mucosal tissues, including the lung. Each ESE member exhibits alternative splicing and yields at least two isoforms (a and b) with transcriptional targets largely unidentified. The studies described herein define a novel role for ESE transcription factors in transactivation of the human lysozyme gene (LYZ), an essential component of innate defense in lung epithelia. Of the six ESE isoforms, ESE-1a and ESE-1b transactivated LYZ promoter in reporter gene assays, whereas only ESE-1b dramatically upregulated transcription of endogenous LYZ in both nonpulmonary and pulmonary epithelial cells. Importantly, ESE-1a and ESE-1b could transactivate the LYZ promoter in cultured primary airway epithelial cells. ESE-2 and ESE-3 isoforms were unable to substantially transactivate the lysozyme promoter or upregulate transcription of endogenous LYZ. Two functional consensus Ets sites located in the proximal 130-bp LYZ promoter were responsive to ESE-1b as identified by site-directed mutagenesis and DNA binding assays. Short hairpin RNA attenuation of endogenous ESE-1b mRNA levels in lung epithelia resulted in decreased LYZ transcription. Furthermore, ESE-1 antibody specifically enriched the 130-bp proximal LYZ promoter in chromatin immunoprecipitation analyses. These findings define a novel role for ESE transcription factors in regulating lung innate defense and suggest distinct regulatory functions for ESE family members.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajplung.00130.2007 | DOI Listing |
Adv Sci (Weinh)
October 2024
Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling, Shaanxi, 712100, China.
Gene-editing technology has become a transformative tool for the precise manipulation of biological genomes and holds great significance in the field of animal disease-resistant breeding. Mastitis, a prevalent disease in animal husbandry, imposes a substantial economic burden on the global dairy industry. In this study, a regulatory sequence gene editing breeding strategy for the successful creation of a gene-edited dairy (GED) goats with enhanced mastitis resistance using the ISDra2-TnpB system and dairy goats as the model animal is proposed.
View Article and Find Full Text PDFBiochem Genet
December 2024
Department of Plant Genetics and Breeding, Islamic Azad University, Khorramabad Branch, Khorramabad, Iran.
Heveins are one of the most important groups of plant antimicrobial peptides. So far, various roles in plant growth and development and in response to biotic and abiotic stresses have reported for heveins. The present study aimed to identify and characterize the hevein genes in two-row and six-row cultivars of barley.
View Article and Find Full Text PDFHortic Res
September 2023
Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing 400712, China.
Genet Sel Evol
September 2022
Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518124, Shenzhen, China.
Background: The genetic mechanisms that underlie phenotypic differentiation in breeding animals have important implications in evolutionary biology and agriculture. However, the contribution of cis-regulatory variants to pig phenotypes is poorly understood. Therefore, our aim was to elucidate the molecular mechanisms by which non-coding variants cause phenotypic differences in pigs by combining evolutionary biology analyses and functional genomics.
View Article and Find Full Text PDFFront Immunol
September 2021
Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
Renal ischemia-reperfusion injury (IRI) contributes to acute kidney injury (AKI), increases morbidity and mortality, and is a significant risk factor for chronic kidney disease (CKD). Macrophage infiltration is a common feature after renal IRI, and infiltrating macrophages can be polarized into the following two distinct types: M1 macrophages, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!