Processing of the glycan structures on glycoproteins by different glycosylation enzymes depends on, among other, the non-uniform distribution of these enzymes within the Golgi stacks. This compartmentalization is achieved by a balance between anterograde and retrograde vesicular trafficking. If the balance is disturbed, the glycosylation machinery is mislocalized, which can cause Congenital Disorders of Glycosylation type II (CDG-II), as illustrated by the identification of congenital defects in the Conserved Oligomeric Golgi (COG) complex in humans. We collected findings from different COG deficient cell types, such as CHO, yeast and human fibroblasts to hypothesize about structure and function of the COG complex, and compared the phenotypes and genotypes of the patients known with a COG deficiency. Among 35 CDG-II patients we found 5 patients with a COG defect. COG defects are a novel group of CDG-II with deficient N- as well as O-glycosylation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymgme.2007.08.118DOI Listing

Publication Analysis

Top Keywords

cog complex
12
conserved oligomeric
8
oligomeric golgi
8
golgi cog
8
novel group
8
congenital disorders
8
disorders glycosylation
8
patients cog
8
cog
7
deficiencies subunits
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!