Lead (Pb) is a xenobiotic metal with no known essential function in cellular growth, proliferation, or signaling. Decades of research characterizing the toxicology of Pb have shown it to be a potent neurotoxicant, especially during nervous system development. New concepts in the neurotoxicology of Pb include advances in understanding the mechanisms and cellular specificity of Pb. Experimental studies have shown that stress can significantly alter the effects of Pb, effects that could potentially be mediated through alterations in the interactions of glucocorticoids with the mesocorticolimbic dopamine system of the brain. Elevated stress, with corresponding elevated glucocorticoid levels, has been postulated to contribute to the increased levels of many diseases and dysfunctions in low socioeconomic status populations. Cellular models of learning and memory have been utilized to investigate the potential mechanisms of Pb-induced cognitive deficits. Examination of long-term potentiation in the rodent hippocampus has revealed Pb-induced increases in threshold, decreases in magnitude, and shorter retention times of synaptic plasticity. Structural plasticity in the form of adult neurogenesis in the hippocampus is also impacted by Pb exposure. The action of Pb on glutamate release, NMDA receptor function, or structural plasticity may underlie perturbations in synaptic plasticity and contribute to learning impairments. In addition to providing insight into potential mechanisms of Pb-induced cognitive deficits, cellular models offer an opportunity to investigate direct effects of Pb on isolated biological substrates. A target of interest is the 78-kDa molecular chaperone glucose-regulated protein (GRP78). GRP78 chaperones the secretion of the cytokine interleukin-6 (IL-6) by astrocytes. In vitro evidence shows that Pb strongly binds to GRP78, induces GRP78 aggregation, and blocks IL-6 secretion in astroglial cells. These findings provide evidence for a significant chaperone deficiency in Pb-exposed astrocytes in culture. In the long term, chaperone deficiency could underlie protein conformational diseases such as Alzheimer's Disease (AD). Lead exposure in early life has been implicated in subsequent progression of amyloidogenesis in rodents during old age. This exposure resulted in an increase in proteins associated with AD pathology viz., beta-amyloid precursor protein (beta-APP), and beta-amyloid (Abeta). These four new lines of research comprise compelling evidence that exposures to Pb have adverse effects on the nervous system, that environmental factors increase nervous system susceptibility to Pb, and that exposures in early life may cause neurodegeneration in later life.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.taap.2007.08.001 | DOI Listing |
J Neurosurg Case Lessons
January 2025
Department of Orthopedic Surgery, Iwate Medical University, Shiwa-gun, Iwate Prefecture, Japan.
Background: Septic arthritis of the lumbar facet joint (SALFJ) is a rare condition that can lead to serious complications. The authors present an uncommon case in which SALFJ resulted in bacterial meningitis (BM) with hydrocephalus and pyogenic ventriculitis, causing a disturbance of consciousness. Reports describing perforation of the dura mater by an epidural abscess are rare, and the present case offers valuable insights into the management of complex and severe complications arising from SALFJ.
View Article and Find Full Text PDFPLoS One
January 2025
Division of Oral Physiology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
This study examined the effects of treadmill running (TR) regimens on craniofacial pain- and anxiety-like behaviors, as well as their effects on neural changes in specific brain regions of male mice subjected to repeated social defeat stress (SDS) for 10 days. Behavioral and immunohistochemical experiments were conducted to evaluate the impact of TR regimens on SDS-related those behaviors, as well as epigenetic and neural activity markers in the anterior cingulate cortex (ACC), insular cortex (IC), rostral ventromedial medulla (RVM), and cervical spinal dorsal horn (C2). Behavioral responses were quantified using multiple tests, while immunohistochemistry measured histone H3 acetylation, histone deacetylases (HDAC1, HDAC2), and neural activity markers (FosB and phosphorylated cAMP response element-binding protein (pCREB).
View Article and Find Full Text PDFPLoS Genet
January 2025
Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.
Some animals can regenerate large missing regions of their nervous system, requiring mechanisms to restore the pattern, numbers, and wiring of diverse neuron classes. Because injuries are unpredictable, regeneration must be accomplished from an unlimited number of starting points. Coordinated regeneration of neuron-glia architecture is thus a major challenge and remains poorly understood.
View Article and Find Full Text PDFPLoS One
January 2025
Laboratory of Developmental Biology, Department of Morphology and Genetics-Paulista Medicine School, Federal University of Sao Paulo (UNIFESP), Sao Paulo, SP, Brazil.
Melatonin is a pineal hormone synthesized exclusively at night, in several organisms. Its action on sperm is of particular interest, since they transfer genetic and epigenetic information to the offspring, including microRNAs, configuring a mechanism of paternal epigenetic inheritance. MicroRNAs are known to participate in a wide variety of mechanisms in basically all cells and tissues, including the brain and the sperm cells, which are known, respectively, to present 70% of all identified microRNAs and to transfer these molecules to the embryo.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, SGGW in Warsaw, Warsaw, Poland.
The canine elbow joint is innervated by four nerves: the musculocutaneous, median, radial, and ulnar nerves. There is little data in the veterinary literature examining the course of the articular branches of those nerves. There is also no agreement as to their anatomical location in the joint capsule nor to their number.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!