Adenosine 3',5'-cyclic monophosphate (cAMP)-dependent phosphoregulation of mitochondrial complex I is inhibited by nucleoside reverse transcriptase inhibitors.

Toxicol Appl Pharmacol

Department of Biochemistry & Molecular Biology, Toxicology Graduate Program, University of Minnesota Medical School Duluth, 1035 University Drive, Duluth, MN 55812, USA.

Published: January 2008

Nucleoside analog reverse transcriptase inhibitors (NRTIs) are known to directly inhibit mitochondrial complex I activity as well as various mitochondrial kinases. Recent observations that complex I activity and superoxide production are modulated through cAMP-dependent phosphorylation suggests a mechanism through which NRTIs may affect mitochondrial respiration via kinase-dependent protein phosphorylation. In the current study, we examine the potential for NRTIs to inhibit the cAMP-dependent phosphorylation of complex I and the associated NADH:CoQ oxidoreductase activities and rates of superoxide production using HepG2 cells. Phosphoprotein staining of immunocaptured complex I revealed that 3'-azido-3'-deoxythymidine (AZT; 10 and 50 microM), AZT monophosphate (150 microM), and 2',3'-dideoxycytidine (ddC; 1 microM) prevented the phosphorylation of the NDUFB11 subunit of complex I. This was associated with a decrease in complex I activity with AZT and AZT monophosphate only. In the presence of succinate, superoxide production was increased with 2',3'-dideoxyinosine (ddI; 10 microM) and ddC (1 microM). In the presence of succinate+cAMP, AZT showed an inverse dose-dependent effect on superoxide production. None of the NRTIs examined inhibit PKA activity suggesting that the observed effects are due to a direct interaction with complex I. These data demonstrate a direct effect of NRTIs on cAMP-dependent regulation of mitochondrial bioenergetics independent of DNA polymerase-gamma activity; in the case of AZT, these observations may provide a mechanism for the observed long-term toxicity with this drug.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2390784PMC
http://dx.doi.org/10.1016/j.taap.2007.08.015DOI Listing

Publication Analysis

Top Keywords

superoxide production
16
complex activity
12
complex
8
mitochondrial complex
8
reverse transcriptase
8
transcriptase inhibitors
8
camp-dependent phosphorylation
8
complex associated
8
azt monophosphate
8
ddc microm
8

Similar Publications

The present study was conducted to evaluate the efficacy of extract against the white spot syndrome virus (WSSV) in black tiger shrimp () following oral administration . The methanol extract derived from the extraction was sprayed into feed at a concentration of 0.0 %, 0.

View Article and Find Full Text PDF

Objectives: To investigate the natural product sulforaphane (SFN) in protection of membranous nephropathy (MN) by inhibiting oxidative stress-associated podocyte pyroptosis.

Materials And Methods: A passive Heymann nephritis (PHN) model was established and treated with SFN. Clinical manifestations were examined by testing 24-hr urine protein, albumin, total cholesterol, triglyceride, high-density and low-density lipoprotein levels.

View Article and Find Full Text PDF

Low-voltage electrostatic field (LP) enhances the freezing quality of food by increasing water supercooling and improving ice crystal morphology. This study explored the effects of LP treatment on the storage quality of square bamboo shoots using physicochemical, gas chromatography-mass spectrometry, and metabolomics methods. Results showed that with prolonged storage, the LP-treated group had lower activities of peroxidase, phenylalanine ammonia-lyase, and lower levels of malondialdehyde, cellulose, and lignin compared to the control group, while superoxide dismutase and catalase activities and shear force values were higher.

View Article and Find Full Text PDF

Observing quantum mechanical characteristics in biological processes is a surprising and important discovery. One example, which is gaining more experimental evidence and practical applications, is the effect of weak magnetic fields with extremely low frequencies on cells, especially cancerous ones. In this study, we use a mathematical model of ROS dynamics in cancer cells to show how ROS oscillatory patterns can act as a resonator to amplify the small effects of the magnetic fields on the radical pair dynamics in mitochondrial Complex III.

View Article and Find Full Text PDF

LC-MS/MS based analytical strategies for the detection of lipid peroxidation products in biological matrices.

J Pharm Biomed Anal

January 2025

Department of Bioscience and Technology for Food, Agriculture and Environmental, University of Teramo, Via Renato Balzarini 1, Teramo 64100, Italy. Electronic address:

Oxidative stress (OS) arises mainly from exposure to reactive oxygen species (ROS) such as superoxide anion, hydroxyl radical, and hydrogen peroxide. These molecules can cause significant damage to proteins, DNA, and lipids, leading to various diseases. Cells fight ROS with detoxifying enzymes; however, an imbalance can cause damage leading to ischemic conditions, heart disease progression, and neurological disorders such as Alzheimer's disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!