Contribution of three regions (phosphate-binding, 50's and 90's loops) of Anabaena apoflavodoxin to FMN binding and reduction potential was studied. Thr12 and Glu16 did not influence FMN redox properties, but Thr12 played a role in FMN binding. Replacement of Trp57 with Glu, Lys or Arg moderately shifted E(ox/sq) and E(sq/hq) and altered the energetic of the FMN redox states binding profile. Our data indicate that the side chain of position 57 does not modulate E(ox/sq) by aromatic stacking or solvent exclusion, but rather by influencing the relative strength of the H-bond between the N(5) of the flavin and the Asn58-Ile59 bond. A correlation was observed between the isoalloxazine increase in solvent accessibility and less negative E(sq/hq). Moreover, E(sq/hq) became less negative as positively charged residues were added near to the isoalloxazine. Ile59 and Ile92 were simultaneously mutated to Ala or Glu. These mutations impaired FMN binding, while shifting E(sq/hq) to less negative values and E(ox/sq) to more negative. These effects are discussed on the bases of the X-ray structures of some of the Fld mutants, suggesting that in Anabaena Fld the structural control of both electron transfer steps is much more subtle than in other Flds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.abb.2007.08.024 | DOI Listing |
J Mol Model
January 2025
Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, 48128, USA.
Context: Riboflavin (RF), also known as B2 vitamin, is the precursor to flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), two co-enzymes involved in many electron transport processes. Interactions of the isoalloxazine ring, common to all three compounds, are of great interest due to their biological function in flavoproteins and relevance in the transport by the carrier protein leading to development of drug delivery strategies and non-invasive diagnostics techniques. Based on protein crystallographic data, a computational investigation of the interactions in the complexes between lumiflavin, a model compound, and aromatic amino acids, tyrosine and tryptophan, was pursued with the goal of characterizing noncovalent interactions.
View Article and Find Full Text PDFBiochemistry
December 2024
Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna V1V 1V7, Canada.
Anaerobilin synthase catalyzes the decyclization of the heme protoporphyrin ring, an O-independent reaction that liberates iron and produces the linear tetrapyrrole, anaerobilin. The marine bacterium , the enteric pathogen O157:H7, and the opportunistic oral pathogen encode anaerobilin synthase as part of their heme uptake/utilization operons, designated ( O157:H7), (), and (). and O157:H7 contain accessory proteins (ChuS, ChuY, and HmuF) encoded in their respective operons that mitigate against the cytotoxicity of labile heme and anaerobilin by functioning in heme trafficking and anaerobilin reduction.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St. Building D, 90-236 Lodz, Poland.
The subject of this study is the interaction between 5,10,15,20-tetrakis (4-sulfonatophenyl)-porphyrin (TSPP), a potential photosensitizer for photodynamic therapy (PDT) and radiotherapy, and human serum albumin (HSA), a crucial protein in the body. The main objective was to investigate the binding mechanisms, structural changes, and potential implications of these interactions for drug delivery and therapeutic applications. Spectroscopic techniques and computational methods were employed to investigate the mechanism and effects of TSPP binding by HSA.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208 001, India. Electronic address:
Redox Biol
December 2024
Department of Health Management Centre & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610000, China. Electronic address:
Riboflavin kinase (RFK) is essential in riboflavin metabolism, converting riboflavin to flavin mononucleotide (FMN), which is further processed to flavin adenine dinucleotide (FAD). While RFK enhances macrophage phagocytosis of Listeria monocytogenes, its role in macrophage polarization is not well understood. Our study reveals that RFK deficiency impairs M(IFN-γ) and promotes M(IL-4) polarization, both in vitro and in vivo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!