Poly(2-oxazolines) in biological and biomedical application contexts.

Adv Drug Deliv Rev

Unilever Centre for Molecular Science Informatics, University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge CB1 9SB, United Kingdom.

Published: December 2007

AI Article Synopsis

  • Polyoxazolines can be created with different structures and functions using a controlled method called cationic ring-opening polymerization.
  • They are used in various applications, including coatings, pigment dispersants, and as biomaterials due to their low toxicity and water-solubility.
  • The paper reviews advancements in polyoxazoline-based polymers for biological and biomedical uses, focusing on systems like membranes, nanoparticles, and drug delivery methods since 2000.

Article Abstract

Polyoxazolines of various architectures and chemical functionalities can be prepared in a living and therefore controlled manner via cationic ring-opening polymerisation. They have found widespread applications, ranging from coatings to pigment dispersants. Furthermore, several polyoxazolines are water-soluble or amphiphilic and relatively non-toxic, which makes them interesting as biomaterials. This paper reviews the development of polyoxazoline-based polymers in biological and biomedical application contexts since the beginning of the millennium. This includes nanoscalar systems such as membranes and nanoparticles, drug and gene delivery applications, as well as stimuli-responsive systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.addr.2007.08.018DOI Listing

Publication Analysis

Top Keywords

biological biomedical
8
biomedical application
8
application contexts
8
poly2-oxazolines biological
4
contexts polyoxazolines
4
polyoxazolines architectures
4
architectures chemical
4
chemical functionalities
4
functionalities prepared
4
prepared living
4

Similar Publications

The rise in popularity of two-photon polymerization (TPP) as an additive manufacturing technique has impacted many areas of science and engineering, particularly those related to biomedical applications. Compared with other fabrication methods used for biomedical applications, TPP offers 3D, nanometer-scale fabrication dexterity (free-form). Moreover, the existence of turnkey commercial systems has increased accessibility.

View Article and Find Full Text PDF

Cell-Instructive Biomaterials with Native-Like Biochemical Complexity.

Annu Rev Biomed Eng

January 2025

1Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA; email:

Biochemical signals in native tissue microenvironments instruct cell behavior during many biological processes ranging from developmental morphogenesis and tissue regeneration to tumor metastasis and disease progression. The detection and characterization of these signals using spatial and highly resolved quantitative methods have revealed their existence as matricellular proteins in the matrisome, some of which are bound to the extracellular matrix while others are freely diffusing. Including these biochemical signals in engineered biomaterials can impart enhanced functionality and native-like complexity, ultimately benefiting efforts to understand, model, and treat various diseases.

View Article and Find Full Text PDF

The phylogeographic inference approach aims to connect genomic data with epidemiology to understand the spread and evolution of pathogens using visualization of spatiotemporal reconstructions. Orthohantavirus hantanense (HTNV), the causative agent of hemorrhagic fever with renal syndrome (HFRS), represents a significant global public health concern. Here, we introduce a localized Nextstrain platform for HTNV, offering a comprehensive resource for facilitating spatiotemporal genomic surveillance and the study of evolutionary dynamics of viral genomes.

View Article and Find Full Text PDF

: The aim of this study was to investigate the effect of substrate - polycaprolactone (PCL)-based porous membrane modified with rosmarinic acid (RA), (PCL-RA) and to determine the optimal values of low field laser irradiation (LLLT) as stimulators of biological response of RAW 264.7 macrophages. : The porous polymer membrane was obtained by the phase inversion method, the addition of rosmarinic acid was 1%wt.

View Article and Find Full Text PDF

Endogenous LRRK2 and PINK1 function in a convergent neuroprotective ciliogenesis pathway in the brain.

Proc Natl Acad Sci U S A

February 2025

Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom.

Mutations in Leucine-rich repeat kinase 2 (LRRK2) and PTEN-induced kinase 1 (PINK1) are associated with familial Parkinson's disease (PD). LRRK2 phosphorylates Rab guanosine triphosphatase (GTPases) within the Switch II domain while PINK1 directly phosphorylates Parkin and ubiquitin (Ub) and indirectly induces phosphorylation of a subset of Rab GTPases. Herein we have crossed LRRK2 [R1441C] mutant knock-in mice with PINK1 knock-out (KO) mice and report that loss of PINK1 does not impact endogenous LRRK2-mediated Rab phosphorylation nor do we see significant effect of mutant LRRK2 on PINK1-mediated Rab and Ub phosphorylation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!